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MANY STUDIES OF sexual selection have focused 
on the role of ornaments in mate choice (see 
Andersson 1994, Espmark et al. 2000). Birds 
have been a favorite taxon for those studies 
because of the prevalence of conspicuous orna-
ments, including brightly colored feathers, skin, 
and bills, and dramatically elongated feathers 
or feathers of elaborate structure. The colors of 
avian ornaments are the result of carotenoids, 
melanins, tissue structure, or some combination 
thereof. Carotenoid ornaments (e.g. bright reds, 
oranges, and yellows) have generated much in-
terest. Those pigments can not be synthesized de
novo by animals, but rather must be included in 
the diet (Brush 1990). That allows for the possi-
bility that they are limited in nature or diffi cult 
to obtain (Hill 1994, 1996; Hudon 1994; Linville 
and Breitwisch 1997). Additionally, carotenoids 
have been implicated in a variety of critical 
physiological functions in animals. That recog-
nition has stimulated much recent research on 
mate choice of carotenoid advertisement and 
the indicator value of carotenoid ornaments for 
several important aspects of individual condi-
tion.

Avian melanin ornaments have also received 
considerable research attention. In contrast 
to studies of carotenoid ornaments, however, 
the primary focus of studies of melanin orna-
ments has been on the advertisement of melanin 

“badges” in intrasexual competition. Thus, the 
associations among expressions of melanin or-
naments, mate choice, and individual condition 
have not been made to the same degree as for 
carotenoids. There are several possible reasons 
for that. First, melanins not only color orna-
ments but are also the basis of most inconspicu-
ous appearances (i.e. camoufl age), in contrast 
to the highly conspicuous carotenoids. Second, 
melanins are synthesized by animals and thus 
do not need to be included in the diet. Finally, it 
is perhaps incorrectly assumed that melanin or-
naments are typically black or blackish-brown 
and thus show both less variation within spe-
cies and less diversity across species than do 
carotenoid ornaments. 

Here, we review a variety of aspects of the 
biology of avian melanin ornaments. We dem-
onstrate that the color diversity of melanin 
ornaments is quite broad, including red (e.g. 
Red Junglefowl and Barn Swallow [Hirundo
rustica]), orange (e.g. Red Junglefowl), yellow 
(e.g. Western Tanager [Piranga ludoviciana]),
and green (e.g. Mallard), in addition to black 
and brown. Color differences in all melanin 
ornaments are, in part, a function of the ratio 
of the two types of melanins contained, and 
we outline the intriguingly different metabolic 
pathways to the formation of the two different 
categories of melanins. There are likely to be 
both signifi cant physiological benefi ts and costs 
to melanin production, and those may well dif-
fer for the two types of melanins. Finally, we 
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address new avenues of investigation concern-
ing melanin ornaments in the context of sexual 
selection.

DIVERSITY OF MELANIN ORNAMENTS

All melanin-colored ornaments contain a 
mixture of the two types of melanin, eumelanin 
and pheomelanin. The refl ectance spectrum of 
the ornament is, in part, a function of the ratio 
of the two types of melanin in feathers (Haase 
et al. 1992, 1995; Prota et al. 1995; Shiojiri et al. 
1999). Additionally, the absolute amount of eu-
melanin is important, because its presence may 
overwhelm the contribution of pheomelanin 
to the refl ectance spectrum. The two types of 
melanin have different spectral qualities (Sarna 
and Swartz 1998). Eumelanin is perceived by 
humans (and presumably by birds) as black to 
dark brown, whereas pheomelanin is perceived 
as light brown, buff, dull red, orange, and yel-
low (Prota et al. 1995). Some pheomelanin pig-
ments have the potential to produce brighter 
reds, oranges, and yellows than may typically 
be thought to be due to melanins (e.g. the bright 
orange feathers of Red Junglefowl; J. Hudon 
pers. comm.). A fi eld guide to the birds of any 
geographic region shows quite clearly that or-
naments of such colors are widespread. Despite 
that diversity, investigators have focused pre-
dominantly on black to brown eumelanic orna-
ments (Table 1). 

The question of the diversity of melanin orna-
ments is complicated by the fi ndings that both 
melanins and carotenoids can occur in the same 
ornament (Hudon 1991, Saino et al. 1999; K. 
McGraw pers. comm.). Melanins occur in orna-
ments that were once considered to be pigment-
ed solely by carotenoids, for example, the yel-
low feathers of Western Tanagers (Hudon 1991) 
(see also Stradi 1998). In addition, carotenoids 
have been found in what are commonly clas-
sifi ed as melanin ornaments, for example, the 
rusty-orange feathers of Barn Swallows (Saino 
et al. 1999; see also Howell 1952, Nero 1954). 
Refl ectance spectra (and color perception) of 
such mixed ornaments may well depend on 
both the carotenoid and melanin pigments 
contained. There are, however, possible tech-
nological problems in verifying that hypothesis, 
insofar as the carotenoid pigment contribution 
to the spectrum in some mixed ornaments may 
overwhelm that due to melanins (J. Hudon 

pers. comm.), or melanins may overwhelm ca-
rotenoids (Theron et al. 2001). The alternative 
would thus be chemical extraction of pigments 
from an ornament (see below) and comparison 
of pigment amounts to refl ectance spectra for a 
sample of individuals. To our knowledge, no 
one has yet done that. Moreover, no one has 
evaluated mate choice as a function of pigment 
composition in mixed ornaments assessed in 
the process of choice.

MELANIN PRODUCTION

The examinations of potential costs, con-
trols, and material requirements of melanin 
production have focused on mammals, with 
less research on avian melanogenesis. We 
therefore present fi ndings from studies on both 
mammals and birds in the following discus-
sion. Melanogenesis involves the conversion of 
L-tyrosine into the two types of melanin. The 
biochemical pathway along which L-tyrosine 
is converted to melanin is complex and may 
have signifi cant energy costs associated with 
it (V. Hearing pers. comm., Fig. 1). Both end 
products, eu- and pheomelanin, are large, 
negatively charged, insoluble, nitrogenous het-
eropolymers.

Melanogenesis takes place in melanocytes, 
which are derived from neural crest cells (Duval 
et al. 2002, Han et al. 2002). Melanocytes respon-
sible for skin, hair, and feather pigmentation are 
found in the basal layer of the epidermis and 
in hair or feather follicles (Duval et al. 2002). 
Melanin production occurs in melanosomes, a 
melanocyte-specifi c organelle. The two types of 
melanosomes are rod-shaped eumelanosomes 
and spherical pheomelanosomes (Wolff 2003). 
Melanosomes move from the melanocytes into 
keratinocytes and become incorporated into 
growing hair or feathers, thus providing pig-
mentation (Duval et al. 2002). Pigments in skin, 
fur, or feathers represent a mixture of the two 
types of melanins that originate from multiple 
melanocytes.

There are at least three enzymes involved in 
melanogenesis that require metal cofactors. The 
copper-containing enzyme tyrosinase catalyzes 
the rate-limiting step in melanogenesis (Wolff 
2003). The two enzymes Tyrp-1 and Tyrp-2 are 
required for eumelanogensis. The latter enzyme 
requires zinc, and the former is thought to re-
quire iron (Furumura et al. 1998). There are ad-
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verse health effects on birds when the diet has 
either too little or too much copper. Copper de-
fi ciency affects production of hemoglobin, with 
anemia as the result, whereas iron defi ciency 
affects both production and maintenance of 
blood cells and the constituents of eggs (Arnall 
and Keymer 1975). The functions of zinc are not 
known with certainty. Whether defi ciencies in 
those metal cofactors affect melanogenesis is 
also unknown. 

Melanogenesis begins with the oxidation of 
L-tyrosine and DOPA to dopaquinone by  ty-
rosinase, the rate-limiting step in melanogenesis 
(Wolff 2003; Fig. 1). In addition to production of 
dopaquinone, tyrosinase also oxidizes two oth-
er eumelanin intermediates. Eumelanogenesis 
is stimulated by the binding of -melanocyte
stimulating hormone ( -MSH) to the G protein-
coupled receptor MC1R (also called CMC1 in 
birds) in the melanocyte membrane (Takeuchi 
et al. 1996a, b; Bowers et al. 1997; Theron et al. 
2001; Voisey and Van Daal 2002; Wolff 2003). 
When -MSH binds to MC1R, levels of tryo-

sinase, Tyrp1, and Tyrp2 increase, and levels 
of intracellular cysteine decrease. That favors 
production of eumelanin. Pheomelanogenesis 
occurs without -MSH stimulation. During 
pheomelanogenesis, following the produc-
tion of dopaquinone, cysteine combines with 
dopaquinone to form cysteinyldopas that are 
oxidized via benzothiazines to pheomelanin 
(Wolff 2003). During pheomelanogenesis, the 
enzymes important to eumelanogenesis do 
not increase in concentration, and intracellular 
cysteine levels remain high. That favors the for-
mation of pheomelanin. Additionally, pheome-
lanogenesis is increased when agouti signaling 
protein (ASP) interacts with MC1R (Hunt and 
Thody 1995, Wolff 2003). 

Pheomelanogenesis has been suggested as 
the default pathway during pigment produc-
tion (Wolff 2003). Presence of a default pathway 
is important. If there are signifi cant differences 
in production costs of the two melanins, at least 
one production cost is nontrivial, and a chang-
ing ratio of melanin types affects the refl ectance 

FIG. 1. Pathways for both eu- and pheomelanogenesis (reproduced from Wakamatsu and Ito [2002] with 
permission from Blackwell Publishing Ltd.).
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spectrum, then the expression of a melanin 
ornament can serve as an honest indicator of 
condition. It is thus important that investigators 
begin to examine production costs more closely, 
measure pheomelanin and eumelanin content 
in melanin ornaments, and test whether differ-
ent ratios of melanins are perceptually distinct 
to avian vision and affect the behavior of the 
perceiver.

The pathway of melanogenesis is complex, 
requiring several different enzymes and ions,  
appropriate amino acid precursors, a favor-
able pH environment, and the infl uence of ke-
rotinocytes and hormones. The products of >80 
gene loci are involved in melanogenesis (Haase 
and Schmedemann 1992; Aroca et al. 1993; 
Haase et al. 1995; Hearing 1999, 2000; Ito et al. 
2000; Takeuchi et al. 2000; Duval et al. 2002; 
Hoogduijn et al. 2003). In addition to complicat-
ed controls and requirements, melanogenesis is 
known to produce cytotoxic byproducts that 
are lethal to melanocytes (Tomita et al. 1984, 
Thody et al. 1991, Bowers et al. 1994; R. Bowers 
pers. comm.). Avian melanocyte cultures can be 
rescued by addition of antioxidants, suggesting 
that the cytotoxic byproducts are predominant-
ly oxygen free radicals (Bowers et al. 1994; R. 
Bowers pers. comm.). It is not known, however, 
whether cytotoxic chemical production in me-
lanogenesis affects either ornament expression 
or the body at large. In any case, complicated 
pigment production may provide information 
concern the health, genetic quality, or condition 
of an individual, as has been argued for other 
complicated types of pigments (Arnold et al. 
2002).

MEASURING MELANIN ORNAMENT EXPRESSION

AND VARIATION

The majority (58%) of studies on melanin 
ornaments cited in Table 1 measured only the 
size (or area) of discrete patches of melanic 
feathers (44 of 76 studies). Thirty-three of the 
76 studies (43%) in some way measured color of 
melanin ornaments (including four studies that 
measured both size and color). Sixteen of the 33 
studies measuring color recorded only gross 
color changes (e.g. brown vs. black), six used 
color chips (either Munsell or Methuen), and 
seven used color refl ectance spectrophotometry 
(see below). Three studies measured melanin 
content of feathers.

In some species, there is obvious variation 
in color of melanin ornaments (e.g. a gradation 
from dark brown to black). In such species, only 
gross color differences have been measured 
(e.g. Slagsvold and Lifjeld 1988, 1992; Sætre 
et al. 1995, 1997 for Pied Flycatchers). Prior to 
the recent introduction of portable refl ectance 
spectrophotometers, there were few other 
options for measuring color differences. The 
newly employed spectrophotometer technol-
ogy can reveal variation unapparent to human 
vision (Johnsen and Zuk 1996, Hill 1998, Hill 
and Brawner 1998, McGraw and Hill 2000, 
Smiseth et al. 2001, Jawor 2002). Whether that 
variation is perceived visually by birds must 
be empirically established, but obviously it is 
unwise to simply assume that it is not. That line 
of argument is even more relevant for melanin 
ornaments other than black, where even hu-
man vision can perceive variation. Refl ectance 
spectrophotometry also yields measures of hue, 
saturation, and brightness of the color being 
measured (Hill 1998). Unfortunately, the cor-
respondence between refl ectance spectra (or 
measures of hue, saturation, and brightness) 
and melanin concentration or melanin ratios is 
unknown.

In a study of Northern Cardinals, we found 
variation in hue, saturation, and brightness of 
the black face mask of males (Jawor 2002). We 
also measured hue, saturation, and brightness 
of melanin ornaments of several other species 
(four eumelanic ornaments and one pheome-
lanic ornament) and found both intra- and inter-
specifi c variability (Table 2). Those data demon-
strate that, in some species, there is substantial 
variation in melanin color variables, whereas in 
others, there is essentially none (Table 2, Figs. 
2 and 3). 

A fi nal measure of ornament expression in-
volves extraction, identifi cation, and quantifi ca-
tion of the pigment contained in the ornament. 
That has been done for carotenoid pigments in 
feathers (Hudon 1991, Stradi 1998, McGraw et 
al. 2001). Both eu- and pheomelanin are diffi cult 
pigments to isolate and measure. The most com-
mon method is the analysis of the byproducts of 
eumelanin oxidation and pheomelanin acid hy-
drolysis (Haase et al. 1995, Ito and Wakamatsu 
1998, Ito et al. 2000). That technique gives an 
estimate of the two types of melanin within 
feathers. Still to be determined are the relation-
ships among melanin content and concentration 
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in ornamental plumage, refl ectance spectra, and 
color perception by birds. 

MELANIN ORNAMENTS AS HONEST INDICATORS

Environmental variables and physiological 
condition can infl uence melanogenesis and thus 
may also affect melanin ornament expression. 
Relevant infl uences on biosynthesis and depo-
sition of melanin into ornaments include food 
availability and changing hormonal condition. 
Food availability is known to affect both gross 
color changes in and area of melanin plum-
age ornaments in some species (Slagvold and 
Lifjeld 1992, Veiga and Puerta 1996, Griffi th et 
al. 1999a), but not in others (Hill 2000, McGraw 
et al. 2002). An unanswered question is whether 
a trade-off occurs at low food levels between 
melanin ornament expression and production 
of other proteins dependent on tyrosine. A 
similar trade-off has been suggested between 
expression of carotenoid ornaments and the 
need for those pigments in other cellular pro-
cesses (Lozano 1994, von Schantz et al 1999). 

Both types of melanins are initially produced 
from L-tyrosine, and cysteine is necessary for 
the production of pheomelanin (Ito et al. 2000). 
In birds, tyrosine is considered an essential 
amino acid (Murphy 1996, Hebert et al. 2002), 
whereas cysteine is synthesized from methio-
nine, another essential amino acid (Griminger 
and Scanes 1986). Historically, amino acids 
have not been considered limiting, but that as-
sumption needs to be reassessed. Indeed, some 
seed diets fed to cage birds are known to be 
protein defi cient and specifi cally defi cient in 
tyrosine, cysteine, or methionine (Arnall and 

Keymer 1975). Changes in melanin coloration 
in molting captive birds have been observed 
when diets are insuffi cient in protein (e.g. Dark-
eyed Juncos; E. Ketterson pers. comm.). It is not 
known whether levels of amino acids—and 
tyrosine in particular—become limiting dur-
ing molt and ornament production. Given that 
amino acid availability may differ among in-
dividuals, that potential constraint on melanin 
ornament production needs to be addressed 
more fully. 

Food availability may infl uence melanin 
ornaments by affecting the hormonal controls 
of melanogenesis as well as affecting essential 
amino acid availability. In mammals, the type of 
melanin produced by melanocytes is controlled 
by an interaction between -MSH and ASP (Lu 
et al. 1994, Hunt and Thody 1995, Hearing 1998, 
Graham et al. 1997). Eumelanogenesis is initi-
ated by the stimulation of MC1R by -MSH,
whereas pheomelanogenesis occurs without 

-MSH signaling, and is infl uenced by ASP 
(see above). Birds do not possess ASP but rather 
agouti related protein (AGRP), which has been 
suggested as functioning in a similar manner 
to ASP (Takeuchi et al. 2000). Agouti related 
protein is expressed in most tissues in birds 
and is known to interact with leptin (a hormone 
produced by adipocytes) and other melanocor-
tin receptors (MC1R–MC5R or CMC1–CMC5) 
to regulate feeding behavior, metabolism, and 
neuroendocrine function both during periods 
of starvation and periods of satiation (Wilson 
et al. 1999, Takeuchi et al. 2000). Agouti related 
protein expression, by infl uencing pheomelanin 
production during molt, may affect the color of 
developing melanin ornaments, thus providing 

TABLE 2. Average hue, saturation, and brightness of melanin ornament coloration of bird species. 

   Average Average Average 
Species Ornament Melanina hueb saturation brightness n
Black-capped Chickadee Bib E 1 (0–60) 5 (0–30) 9 (5–14) 41 
Tufted Titmouse  

(Baeolophus bicolor)  Side patch P 30 (26–33) 54 (40–64) 46 (37–55) 24 a

White-breasted Nuthatch  
(Sitta carolinensis)  Forehead E 187 (0–205) 13 (0–54) 12 (10–30) 5 

Dark-eyed Junco Hood E 34 (0–60) 10 (4–20) 22 (15–32) 22 
Northern Cardinal  

(Cardinalis cardinalis) (male)  Mask E 12 (0–60) 16 (5–32) 14 (9–28) 53 
Northern Cardinal  

(female)  Mask E 31 (17–43) 14 (6–19) 25 (17–33) 28 
a E = eumelanin, P = pheomelanin. 
b For hue, saturation, and brightness, mean followed by range. 
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information concerning an individual’s food 
intake during molt. For example, the color of 
the black face mask in male Northern Cardinals 
is correlated with body condition early in the 
breeding season (J. M. Jawor and R. Breitwisch 
unpubl. data), which, in turn, may refl ect nutri-

tional health during molt the previous autumn 
when the ornament is built. In contrast, in a 
controlled study of the effects of diet on mela-
nin coloration in House Sparrows, McGraw et 
al. (2002) found that food deprivation did not 
infl uence brightness of melanin coloration. 
However, they did not measure ratios of the 
two melanin types in this study. The interac-
tion between AGRP and -MSH, their effect 
on ornament pigmentation, and avian ability 
to perceive differences in the ratio of the two 
melanins in ornaments clearly warrants further 
investigation.

The production of cytotoxic compounds dur-
ing melanogenesis also indicates that melanin 
ornaments can serve as indicators of condition 
and the ability to withstand physiological per-
turbance. Production of oxygen free radicals in 
melanogenesis should be particularly interest-
ing in species that display both melanin and 
carotenoid ornaments, insofar as carotenoids 
can act as oxygen free radical scavengers (von 
Schantz et al. 1999). We hypothesize that in 
such species, the two types of ornaments have 
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FIG. 2. Hue, saturation, and brightness measures of eumelanic ornament coloration from three different bird 
species. Left vertical axis represents the possible values of hue, which can occur anywhere along a 0–360° 
color space. The right axis represents the possible values of saturation and brightness, which are reported as a 
percentage and may range from 0 to 100% saturation or brightness.
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flank coloration. The left vertical axis represents 
the possible values of hue. The right vertical axis 
represents saturation and brightness of measured 
plumage.
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a combined signaling function. Individuals 
can demonstrate their ability not only to with-
stand generation of cytotoxins but also their 
ability to ingest enough carotenoids to satisfy 
pigmentation, other physiological needs, and 
deactivation of the damaging byproducts from 
melanogenesis. That proposal may explain the 
apparent amplifi er effect of melanin ornaments 
on carotenoid ornaments in, for example, gup-
pies (Poecilia reticulata; Brooks 1996).

Melanin ornament expression may be in-
fl uenced by titers of sex hormones during 
molt, during the breeding season, or both. 
Melanocytes are known to express cell surface 
receptors for both estrogen and progesterone, 
although the precise effects of those two hor-
mones on melanogenesis are unknown (Hearing 
1998). Although sex hormones are known to 
affect ornamental characteristics in birds, the 
type of effect varies with species (Haase and 
Schmedemann 1992, Haase et al. 1995). For ex-
ample, in Mallards, higher levels of testosterone 
preceding molt infl uence the eclipse, nonbreed-
ing plumage of males, with higher testosterone 
inducing a more complete eclipse plumage 
(Haase and Schmedemann 1992). Testosterone 
appears to affect melanogenesis so that feathers 
that are predominantly eumelanic in breeding 
plumage become mixed or predominantly phe-
omelanic in nonbreeding plumage (Haase et al. 
1995). In House Sparrows, the area of the black 
bib is enlarged by testosterone during molt 
(Gonzalez et al. 1999, Evans et al. 2000, Gonzalez 
et al. 2001), but whether the ratio of the two 
types of melanins is affected is not known. Also 
in House Sparrows, testosterone enhances bill 
color, with higher levels of testosterone produc-
ing a blacker bill (Keck 1933, Haase 1975). There 
is an opposite effect of testosterone in European 
Starlings (Sturnus vulgaris), with higher levels 
of testosterone inhibiting melanin deposition 
in the bill and favoring carotenoid deposition 
(Witschi and Miller 1938). Those studies indi-
cate that melanin ornaments are infl uenced by, 
and indicative of, levels of hormones that are 
important for breeding behavior. 

It has been suggested that melanin color-
ation is generally unaffected by parasites. Hill 
and Brawner (1998) and McGraw and Hill 
(2000) found no effect of an intestinal coccidian 
parasite, Isospora spp., on melanin coloration 
in House Finches and American Goldfi nches, 
respectively. Additionally, Hill and Brawner 

(1998) found no effect of Mycoplasma gallicepti-
cum (the cause of mycoplasmal conjunctivitis) 
on melanin coloration. In those same experi-
ments, however, coccidial and mycoplasma 
infections negatively infl uenced carotenoid 
ornament expression. We present two caveats 
concerning those studies. First, the melanic 
feathers measured in Hill and Brawner (1998) 
were tail retrix barring, which the authors 
acknowledge may not have been sexually se-
lected as an ornament and thus unlikely to be 
so affected by condition. In McGraw and Hill 
(2000), on the other hand, the melanic feath-
ers were the black forehead patch, and very 
likely an ornament subject to sexual selection. 
Second, melanins are derived from amino acids, 
and there is no reason to expect that coccidial 
parasites, which affect carotenoid absorption 
across the intestinal membrane, similarly af-
fect the absorption of those melanin precursors. 
Active absorption of amino acids is mediated by 
transport proteins in healthy intestinal epithe-
lium, whereas carotenoids are endocytosed by 
epithelial cells. When the epithelium is injured 
by coccidian activity, amino acids may still be 
able to enter or pass between epithelial cells, 
while carotenoids can no longer be absorbed 
(K. Crane pers. comm.). Although melanin or-
naments may not be affected by endoparasites, 
they may be affected by ectoparasites. Fitze and 
Richner (2002) found that ectoparasites (hen 
fl eas [Ceratophyllus gallinae]) affected the area 
of melanin ornamentation in Great Tits, but the 
color of both melanin and carotenoid pigmenta-
tion was not affected.

It has been hypothesized that different types 
of ornaments, and different aspects of a single 
ornament, may convey information on different 
components of condition. Through selection, 
ornaments have thus become associated only 
with those qualities for which they are most 
informative (Møller and Pomiankowski 1993, 
Hill and Brawner 1998, McGraw and Hill 2000). 
Carotenoid ornaments may thus best convey 
information concerning endoparasitism and 
health of the immune system. In contrast, mela-
nin ornaments may best display information 
concerning nutritional health, ectoparasitism, 
and hormonal titers related to aggression and 
intrasexual competitive abilities. We need a 
broader assessment of components of condition 
in relation to ornament expression to determine 
if that proposed division is generally the case. 
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We hypothesize that birds displaying both ca-
rotenoid and melanin ornaments provide more 
reliable indication of their overall quality than 
birds displaying only one or the other type of 
ornament.

SEXUAL SELECTION ON MELANIN ORNAMENTS

Gray (1996) and Badyaev and Hill (2000) 
have proposed that lack of sexual dimorphism 
in melanin ornaments in contrast to carotenoid 
ornament dimorphism is evidence against sexu-
al selection of melanin ornaments. That propo-
sition is based on two assumptions. The fi rst is 
that sexual selection acts much more forcefully 
on males than on females (see Lande 1980), and 
the second is that the primary mechanism of 
sexual selection is unidirectional mate choice. 
However, there is reason to question both of 
those assumptions. First, Amundsen (2000) 
reviewed studies on ornaments in female birds 
and concluded that those frequently function 
both in mate choice and in intrasexual competi-
tion. Second, bidirectional mate choice has been 
demonstrated in some species, and that pattern 
should be common in monogamous, biparental 
birds (Burley 1981, Burley and Coopersmith 
1987). If melanin ornaments function in bidirec-
tional mate choice or female intrasexual compe-
tition, then the prediction of sexual dimorphism 
in those ornaments does not necessarily follow.

Ornaments function in both mechanisms 
of sexual selection (Berglund et al. 1996, 
Qvarnström and Frosgren 1998). Melanin 
ornaments, in particular, appear to function 
more commonly in intrasexual competition 
than in mate choice (Badyaev and Hill 2000). 
If intrasexual competition occurs in both sexes 
for resources, mates, or both, selection should 
favor ornaments that function in both sexes 
and thereby constrain evolution of sexual di-
morphism. In that view, the apparent pattern 
of limited dimorphism in many melanin orna-
ments is not evidence against their evolution 
by sexual selection but of their current use by 
both sexes.

Findings from manipulative aviary studies of 
melanin ornaments have suggested that those 
types of ornaments are unreliable indicators of 
quality unless there is social control of “cheats” 
(Rohwer 1977, Møller 1987a). It seems likely 
that some proportion of social control is a result 
of experimental dissociation of behavior and 

signal. Birds manipulated to signal dominance 
or subordinance frequently do not act in accor-
dance with their altered signal (Rohwer 1977). 
In contrast, signal integrity was maintained 
where either behavior was modifi ed to match 
the new signal or birds were not allowed to in-
teract physically with manipulated conspecifi cs 
(Rohwer and Rohwer 1978, Senar and Camerino 
1998). In any case, social testing need not indi-
cate signal dishonesty. Clearly, condition can 
vary seasonally and on much shorter time 
scales, even daily. We predict that social testing 
should become common if several conditions 
are met: ornaments are built during distinct 
periods, condition can change through time, 
potential benefi ts of social testing are high, and 
the cost of social testing is relatively low for the 
initiator.

Any social testing associated with melanin 
ornaments represents a cost of signaling by 
those ornaments. As signals of dominance 
rank, melanin ornaments stimulate aggressive 
interactions between individuals of similar 
dominance status (Rohwer 1977). As previously 
mentioned, individuals with experimentally al-
tered melanin ornaments frequently experience 
aggression from unaltered conspecifi cs. House 
Sparrows that interact frequently with conspe-
cifi cs during molt grow larger badges (McGraw 
et al. 2003), but whether badge color changes 
is not known. Whereas House Sparrows with 
large badges are dominant to those with 
smaller badges (Møller 1987b, 1988; Gonzalez 
et al. 2002), interactions between individuals 
with similarly sized badges can be prolonged 
and violent (J. M. Jawor pers. obs.). We suggest, 
then, that in addition to physiological costs of 
melanin production, melanin ornaments may 
be costly to individuals in terms of the time and 
energy spent (and risks of injuries incurred) 
defending dominance status from similarly or-
namented and ranked individuals. Those orna-
ments thus would satisfy the requirement that 
honest signals be costly.

An intriguing fi nding in several species is 
that males with smaller melanin ornaments 
have higher reproductive success (Lemon et al. 
1992, Qvarnström and Frosgren 1998, Griffi th et 
al. 1999b). In some cases, less ornamented males 
are also preferred by females (Lemon et al. 1992, 
Qvarnström and Frosgren 1998, Griffi th et al. 
1999b). Those males are often better parents 
than more ornamented males, in terms of nest-



Perspectives in Ornithology260 [Auk, Vol. 120

ling feeding rates (Studd and Robertson 1985a, 
b, 1988; Griffi th et al. 1999b; but see Voltura 
et al. 2002). Melanin ornaments are positively 
affected by testosterone in some species (see 
above), as is aggressive behavior (Rohwer and 
Rohwer 1978). In contrast, paternal behavior 
can be negatively affected by high testosterone 
titers (Ketterson et al. 1992, Ketterson and Nolan 
1994). The preference for less ornamented—and 
presumably less dominant or aggressive males—
may represent a stronger preference for high-
quality parents. Owens and Hartley (1998) found 
that male parental care is reduced in species
with greater sexual dimorphism in the size of 
melanin ornaments. That suggests that melanin 
ornament size, which is affected by testoster-
one, can act as a reliable predictor of parental 
care behavior. Size of melanin ornaments in 
males, therefore, should be relevant to female 
mate choice in species to which the differential 
allocation hypothesis (Burley 1986) applies. 
Importance of paternal care, and the trade-offs 
in reproductive effort that females are willing 
to incur as a consequence of mate choice, need 
to be considered in studies addressing melanin 
ornaments that signal dominance status.

A HOLISTIC VIEW OF ORNAMENTS AND

SEXUAL SELECTION

Our conclusion is that investigators should 
broaden their study of avian melanin orna-
ments. Techniques now available allow for 
increasingly rigorous measurement of melanin 
ornaments, and investigators should no longer 
simply assume that the apparently invariant 
color of eumelanin ornaments is so perceived 
by birds. Further, the known use of black eu-
melanic ornaments in intrasexual competition 
should encourage investigators to focus on the 
question of the types of information being com-
municated by each class of ornament. Any type 
of ornament may best display information on 
only limited aspects of condition, and we see 
no theoretical reason why melanin ornaments 
cannot be as informative as carotenoid orna-
ments regarding particular aspects of condition. 
Carotenoid ornaments may best indicate endo-
parasitism and general health, whereas melanin 
ornaments may best predict dominance, hor-
monal titer, foraging abilities, and ectoparasit-
ism. Intrasexual competition undoubtedly pre-
cedes or constrains mate choice in many species 

of birds, and the use of ornaments in those two 
mechanisms of sexual selection should receive 
equal investigative effort. Our hope is that 
investigators of avian ornamentation will de-
velop a broader view of both the components of 
sexual selection and the diversity of ornaments 
displayed by birds.
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