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Abstract Honest signaling of carotenoid-based orna-
ments may be reinforced by dietary limitation and by
competing physiological demands for carotenoids. This
study measured dietary carotenoids in a natural popula-
tion of the convict cichlid Amatitlania siquia, a species
in which females possess carotenoid-based ventral col-
oration. The zoonotic pathogen Edwardsiella spp. was
detected in wild A. siquia, but carotenoids in the
stomachs of wild fish did not vary significantly with
parasite infection. We followed this with a laboratory
experiment on domestic convict cichlids to test whether
increased dietary carotenoid (ß-carotene) would de-
crease oxidative stress and facilitate clearance of exper-
imental infections of Edwardsiella tarda. Fish main-
tained on a medium carotenoid diet (similar to the diets
of wild fish) recovered from E. tarda infections more
rapidly than fish on control diets, though fish on high
carotenoid diets did not experience a similar benefit.
There was an interaction between carotenoid diet and

E. tarda such that uninfected fish on the medium carot-
enoid diet were significantly more colorful along their
ventral surface compared to fish on the control and high
carotenoid diets. Neither diet nor E. tarda infection
affected oxidative damage, antioxidant capacity, or ca-
rotenoid content of the skin. From our field and labora-
tory data we conclude that carotenoid intake by wild
convict cichlids occurs at a rate sufficient to affect
bacterial infection and ventral coloration, but more data
are needed from wild populations to verify the function-
al significance of these interactions.
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Introduction

Vertebrates must obtain carotenoid pigments from their
diet. The carotenoid trade-off hypothesis predicts that
the honesty of carotenoid-based ornaments is reinforced
by competing physiological demands for carotenoids,
including immunity (Lozano 1994; Blount et al. 2003;
McGraw et al. 2006) and antioxidant balance (Cohen
et al. 2008; Hõrak et al. 2010). Dietary limitation is often
cited as the major factor determining carotenoid avail-
ability for ornamented animals, though this assumption
is rarely tested (Grether et al. 2001; Blount et al. 2012).
There are likely many levels at which carotenoid limi-
tation could be reinforced, including absorption, trans-
portation, conversion and utilization (Fig. 1; Hill and
Johnson 2012).
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The honesty of carotenoid-based ornamentation may
be particularly important in the context of parasite resis-
tance and sexual selection (Hamilton and Zuk 1982).
Parasites may cause reduced expression of carotenoids
as the demand for the immune-related functions of the
pigments increases. This hypothesis is supported pri-
marily through observations of parasite load and pig-
mentation in wild animals, but few studies test it directly
with controlled experimental infections. Our study fo-
cuses on convict cichlids, reverse sexually dichromatic
fishes in the genus Amatitlania. Females (but not males)
bear yellow- or orange-flecked ventral patches along
their flanks, the function of which is not fully under-
stood. Previous work has shown that both carotenoid
pigments and structural components contribute to ven-
tral patch coloration in convict cichlids (Brown et al.
2013). Among fishes, experimental and correlative stud-
ies have generally supported the underlying assumption
that carotenoid-based coloration is an indicator of

parasite load (e.g. Pundamilia nyererei, Maan et al.
2006; bluefin killifish Lucania goodie, Johnson and
Fuller 2015; three-spined stickleback Gasterosteus
aculeatus, Milinski and Bakker 1990, but see Sparkes
et al. 2013). In all of these species, males are the more
ornamented sex. Convict cichlids are somewhat unusual
among fishes in that they are reversed sexually-
dichromatic.

Beeching et al. (1998) reported that female convict
cichlids directed more aggression toward brightly-
colored female intruders, whereas males showed no
preference for colorful or neutral model females. In a
recent field study, Anderson et al. (2015) found that
female coloration decreased as the reproductive cycle
progressed, and as the number of behavioral interactions
with potential predators and heterospecific competitors
increased. Therefore, if yellow-orange ventral colora-
tion is an indicator of parasite and pathogen resistance
in female convict cichlids, it is unclear who the intended

Fig. 1 Stages at which
carotenoid limitation may occur
for Amatitlania siquia or other
fishes. Fish in the environment
have access to some amount of
carotenoids, and a portion of
those is ingested. Several
sequential steps limit carotenoids
between ingestion and allocation,
including release from the food,
absorption into the intestinal
mucosa, conversion to other
molecules or bioactive forms, and
transport by plasma lipoproteins
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recipient of that signal is. The first part of the current
paper describes a brief field study, in which we mea-
sured carotenoids in the stomach contents of wild con-
vict cichlids (A. siquia), as well as pathogenic
Edwardsiel la bacter ia in their skin mucus.
Edwardsiellosis, the disease caused by Edwardsiella
spp., is a disease reported in many species of fishes,
reptiles, birds and mammals (Rashid et al. 1997;
Mohanty and Sahoo 2007).

Following the field study, we performed a laboratory
experiment to test how three biologically relevant levels
of the carotenoid ß-carotene affected E. tarda clearance
rate and oxidative stress parameters. Dietary carotenoids
have been shown to increase pathogen clearance rate of
Vibrio harveyi in the crustacean Gammarus pulex
(Babin et al. 2010) and Isospora spp. in a bird, Turdus
merula (Baeta et al. 2008). An important source of
oxidative stress is reactive oxygen species (ROS) pro-
duced by the innate immune system (Finkel and
Holbrook 2000). ROS are molecules that can oxidize
intracellular components, such as lipids, proteins, and
DNA (Dowling and Simmons 2009). Organisms can
mitigate ROS with endogenous antioxidants such as
superoxide anion dismutase, or exogenous antioxidants
such as carotenoids (Sies et al. 1992). Furthermore,
carotenoid-based ornamentation has been shown to de-
crease under conditions of increased oxidative stress
(Bertrand et al. 2006). In our study, we predict that
increased oxidative stress as a result of immune activa-
tion should cause a reduction in coloration when dietary
carotenoids are limited, and conversely, fish supple-
mented with dietary carotenoids should show decreased
oxidative stress.

This work will test the assumption that dietary avail-
ability of carotenoids is limiting for reverse sexually-
dichromatic female convict cichlids. Relatively few
studies have measured carotenoid intake in free-living
fish. A notable exception is a study by Grether et al.
(1999), in which the authors quantified differences in
carotenoid availability in three river drainages in Trini-
dad, which they related to gut contents and carotenoid-
based ornamentation in the resident guppies Poecilia
reticulata. If our results show that carotenoids are not
limited by their availability in the environment, or by an
environment × parasite interaction, this would indicate
another avenue for potential limitation, such as trans-
portation, storage, and assimilation of carotenoid pig-
ments (Fig. 1; Sefc et al. 2014). The mechanism by
which carotenoid-based ornament honesty is reinforced

is vital to our understanding of how these ornaments
evolve and whether the carotenoid trade-off hypothesis
is relevant to cichlid fishes.

Materials and methods

Study animals

The subjects of the field study were Amatitlania siquia,
which were distinguished from A. nigrofasciata by
Schmitter-Soto (2007). Recent molecular work by
McMahan et al. (2014) contradicts one of the new
species proposed by Schmitter-Soto (2007); therefore,
it is likely that the proposed species A. siquia is actually
synonymous with A. nigrofasciata. The limited avail-
ability of A. siquia stock in captivity, and the ethical
considerations of experimentally infecting wild-caught
fish, made it necessary for us to perform the laboratory
experiment on the closely-related, and commercially
available, A. nigrofasciata. A. nigrofasciata and
A. siquia interbreed freely in the laboratory, produce
viable offspring, and share life history characteristics.

Field collection

We sampled seven sites along the Río Cabuyo in Lomas
Barbudal Biological Reserve, Guanacaste Province,
Costa Rica (10° 30’ N, 85° 23’ W). Each sampling site
consisted of a slow-moving pool ≈50 m apart, distinct
from other pools by riffles or cascades. Upstream immi-
gration (above the sampling areas) was blocked by a
waterfall. Wisenden and Keenleyside (1995) provide
additional details about the study area. Lomas Barbudal
is primarily tropical dry forest, with distinct wet and dry
seasons. We collected the field data for this study in the
dry season from 12 to 23 January, 2013. During this
period, water and air temperatures ranged from 26 to
30 °C throughout the day. Each pool was sampled twice,
at intervals of 2 days. Individual differences in body
masses ensured that the same fish were not sampled
more than once.

Fish were observed grazing on algae in the morning
and late afternoon. During these times, fish were cap-
tured in clear, acrylic dip nets (Aquatic Ecosystems,
Inc.) by snorkeling upstream with face mask and flip-
pers, and transported to holding containers on shore.
GPS location was recorded for each fish. Sex was de-
termined by examination of orange or yellow patch
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coloration on the skin (Beeching et al. 1998; Brown
et al. 2013). Fish were weighed using a spring balance
(±0.1 g; Pesola, Switzerland). Both flanks of each fish
were swabbed for Edwardsiella spp. with a sterile cotton
swab, which was immediately plated on Edwardsiella
isolating media (EIM) in sterile slant tubes. EIM takes
advantage of Edwardsiella resistance to the antibiotic
colistin and was made according to methods outlined in
(Shotts and Waltman 1990). Innoculated EIM was incu-
bated at room temperature for 48 h before analysis.
Infection was confirmed by the presence of smooth dark
green colonies. Fish were considered infected with
Edwardsiella if either stomach contents (see below) or
mucus contained live bacterium.

Stomach contents were obtained using gastric lavage
(Hartleb and Moring 1995), which in preliminary labo-
ratory tests resulted in a high recovery of stomach
contents (98 % by mass) and no mortality. In the field,
fish were held in a dampened, gloved hand, with a wet
paper towel over the eyes. The lavage probe was
inserted into the mouth to the stomach, and then an
attached rubber bulb was pumped by hand until water
regurgitated from the mouth ran clear. Fish were imme-
diately returned to the water within 1 m of the capture
area.

Carotenoids in stomach contents

Stomach contents were swabbed and plated on EIM
prior to filtration through a paper filter (Whatman).
Filter papers and solids from the gut were preserved in
isopropyl alcohol until extraction and carotenoid analy-
sis. Stomach contents were rinsed from paper filters with
ethanol, dried under nitrogen gas, and weighed. Carot-
enoids were extracted using hexane, dried under nitro-
gen, and re-suspended in acetone and Tris-HCl buffer
for de-esterification. Enzymatic de-esterification used
cholesterol esterase (Sigma C-9281) with bile salts to
hydrolyze the carotenoids, as described in Jacobs et al.
(1982). Carotenoids were then extracted again using
sodium sulfate decahydrate and petroleum ether
(Vecchi et al. 1987). These were evaporated under ni-
trogen gas and reconstituted in 82:18 hexane:acetone
mobile phase.

A Waters 600 high performance liquid chromato-
graph (HPLC) with a 20 μl injection loop and a Luna
3 μm analytical silica column (Phenomenex 00F-4162-
E0) separated carotenoid types. The mobile phase
consis ted of an isocrat ic mixture of 82:18

hexane:acetone set to a flow rate of 1.2 ml/min. A
Waters 600E wavelength absorbance detector set at
474 nm produced a chromatogram. Total amounts of
carotenoids were calculated using peak area integration
values and the standard curves for each identifiable
carotenoid.

Laboratory fish handling and measurements

Domestic female convict cichlids (A. nigrofasciata)
were obtained from a commercial distributor and
quarantined for 6 weeks. Following quarantine, fish
were swabbed to test for E. tarda as described above;
none tested positive. They were then anesthetized with
1 mgml−1 tricaine methanesulfonate (MS-222) buffered
to pH 7 with sodium bicarbonate. Standard length (±
0.01 mm) was measured using digital calipers; mean
standard length of these fish was 2.66 cm (range = 1.92–
3.43 cm).

Fish were randomly assigned to diet and expo-
sure groups. The resulting sample sizes were: con-
trol diet =12 (7 exposed to Edwardsiella tarda – see
below, five exposed to control media), 19 medium-
carotenoid diet (six E. tarda, 13 control), and 17 high-
carotenoid diet (nine E. tarda, eight control). Unequal
treatment groups resulted from housing limitations and
exclusion of sexually immature females. Each female
then was housed individually in a 7-L tank aerated with
an airstone at 26 ± 2 °C with a 12:12 light:dark photo-
period. At the end of the experiment, anaesthetized fish
were sacrificed by decapitation following body and
color measurements. Liver and skin from the pigmented
patch area were collected with surgical scissors and
forceps and stored at −80 °C.

Laboratory diets

Diets were based on nutrient-free H440 agar-casein-
dextrin formulations as described previously (Halver
1989; Brown et al. 2013, 2014). Ascorbic acid and α-
tocopherol (Sigma-Aldrich) were added to the base
mixture, as these compounds may act synergistically
with carotenoids to remove free radicals (Martinez
et al. 2008). To this base, ß-carotene was added to create
medium and high carotenoid diets. The high carotenoid
diet contained 210 μg g−1 ß-carotene, while the medium
diet contained 20.0 μg g−1 ß-carotene. The carotenoid
concentrations of our diets were similar to carotenoid
levels used in fish feed in a similar manipulation
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(Kolluru et al. 2006). A previous study on another
Neotropical cichlid Amphilophus citrinellus showed that
ß-carotene in present in the integument and increases
when ß-carotene is added to the diet (Lin et al. 2010).
No carotenoids were added to the control diet; previous
analysis via HPLC confirmed that the carotenoid con-
tent of the control diet is <1 μg g−1 (Brown et al. 2013).
Diets were stored at −80 °C and thawed at 4 °C every
3 days to feed fish. Fish were fed to satiation twice daily.
Uneaten food was removed after 5 min. Experimental
diets were offered for 13 weeks prior to E. tarda expo-
sure and until the end of the experiment, which is
sufficient time for changes in body carotenoid colora-
tion to occur in fishes (Amar et al. 2001; Lin et al. 2010;
Brown et al. 2013).

Reflectance measurements

Tomeasure the color of the yellow-orange ventral patch,
an Ocean Optics USB4000 bifurcated fiber optic spec-
trometer with a pulsating xenon light source recorded
the spectral reflectance of each fish’s ventral patch be-
tween the second and third black vertical stripe (Brown
et al. 2013). A black latex cuff on the probe standardized
the angle (90°) and distance (3 mm) from the surface of
the fish. Spectrometer data was collected using the
SpectraSuite software (version 2.0.159) for wavelengths
300–700 nmwith boxcar smoothing set to five. For each
reading, three spectra were averaged with an integration
time of 100 ms. We analyzed reflectance data within
300–700 nm to encompass the range of visual sensitiv-
ity of convict cichlids (400–700 nm; Jackson 2003).

Reflectance spectra were reduced with principal
components analysis (PCA), which extracts brightness,
hue, and chroma from spectral data in studies of carot-
enoid coloration in animals (Cuthill et al. 1999; Hill and
McGraw 2006; Clotfelter et al. 2007). Orthogonal prin-
cipal components are calculated to account for the
greatest amount of variance among the spectra, as
discussed in Brown et al. (2013). Only components that
accounted for >1 % of the cumulative proportion of
variance were retained. The first three components
(PC1, PC2, and PC3) accounted for 0.88, 0.07, and
0.03 of the total variance, respectively. Based on the
principle component loadings (Fig. 2), we interpret the
second component (PC2) as a measure of yellow, or-
ange, and red pigments. The first and third principle
components account for achromatic brightness and the
relationship between mid-range and very long/short

range values, respectively. For more information on
the interpretation of principle component values in the
context of animal coloration research, see Cuthill et al.
(1999).

Edwardsiella tarda protocols

Virulent E. tarda (originally collected from channel
catfish Ictalarus punctalus at the USGS Leetown Sci-
ence Center, Kearneysville, WV, USA) were grown in
liquid Edwardsiella isolating medium at room tempera-
ture for 48 h, washed twice with phosphate buffered
saline (PBS) and adjusted to 1 × 106 CFU ml−1 using a
spectrophotometer (Bio-Tek). Species identity was con-
firmed by production of hydrogen sulfide on triple sugar
iron (TSI) test slants (Collins and Lyne 1976). A spec-
trophotometric standard curve was determined by colo-
ny count on solid Edwardsiella isolating media plates.
Stock concentrations used in the present experiment also
were confirmed later by colony count on solid
Edwardsiella isolating media.

In fishes, Edwardsiella enters the bloodstream
through the intestines, gills, and epithelium (Mohanty
and Sahoo 2007). For the laboratory-based exposure,
fish were exposed to 142.8 CFU ml−1 E. tarda or
vehicle only (1 ml PBS) in tank water. We determined
in a pilot experiment that this exposure level and dura-
tion produces symptoms (excess mucus production, loss
of appetite, lethargy; Saleh 2005) but no fatalities in
healthy animals. After mixing, tank water from both
groups was grown on Edwardsiella isolating media
and colonies were counted to confirm exposure levels.
Exposures lasted for 12 h, after which fish were re-
moved to sterilized tanks with clean water.

Following exposure, E. tarda in skin mucus was
tested every 3 days post infection (dpi) for 21 days using
an inoculating loop brushed over the entire flank of each
fish to collect a film of fish mucus. The loop was
streaked onto two separateEdwardsiella isolating media
plates (one per flank) and incubated at 22 °C for 48 h. A
fish was considered clear of infection when no
Edwardsiella colonies were observed for two successive
three-day intervals.

Oxidative status

Two assays were used to represent the oxidative status
of each animal: acrolein and Trolox equivalent antioxi-
dant capacity (TEAC). The amount of protein-bound
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acrolein indicates oxidative damage that already has
occurred due to previous, unmitigated oxidative stress
(Uchida et al. 1998). The TEAC assay measures the
total, short-term antioxidant capacity of all circulating
antioxidants, both endogenous and exogenous. Fish
livers were homogenized in 0.1 mg ml−1 PBS, and then
centrifuged at 4500 g for 10min (4 °C). Supernatant was
used for all three assays. A modified Bradford protein
assay kit (Sigma-Aldrich) allowed liver supernatant
concentration to be adjusted to 0.3 mg ml−1 for both
acrolein and TEAC.

For the TEAC assay, colorless 2,2’-azino-bis(3-
ethylbenzthiazoline-6-sulphonic acid (ABTS) reacts
with potassium persulfate to form a blue ABTS radical.
The amount of radical neutralized by an antioxidant-
containing sample was then measured using a 734 nm
spectrophotometer (Molecular Devices VersaMax).
Known concentrations of Trolox, a water soluble analog
of vitamin E, served as a standard curve. The capacity of
a sample to quench ABTS radical is expressed as Trolox
equivalency units.

Acrolein quantification was achieved using the pro-
tocol developed by Uchida et al. (1998). In brief, liver
supernatant or known concentrations of acrolein-
modified bovine serum albumin (BSA) were incubated
for 12 h at 37 °C in a round bottom 96-well plate with a
medium binding coating (Fisherbrand). Wells were then

washed with TBS-tween and blocked with BSA. Acro-
lein was detected by monoclonal antibody mAb5F6.
The secondary antibody was HRP conjugated anti-
mouse IgG produced in rabbit. SIGMA Fast OPD (Sig-
ma Aldrich) substrate solution was used to measure
acrolein amounts with spectrophotometric detection at
450 nm.

Integument carotenoids

Skin was processed for carotenoid analysis using
methods outlined in Brown et al. (2013). Briefly, skin
was frozen in liquid nitrogen and ground to powder
using a mortar and pestle. Carotenoids were extracted
with hexane, and samples were dried, re-suspended in
acetone and diluted into Tris-HCl buffer. Carotenoids
were hydrolyzed with cholesterol esterase (Sigma
C-9281) and extracted using sodium sulfate decahydrate
and hexane. Hexane was evaporated under nitrogen gas
and reconstituted in 82:18 hexane:acetone mobile
phase.

Analyses were performed on a Waters 600 HPLC
using a Luna 3μmanalytical silica column (Phenomenex
00F-4162-E0) at a flow rate of 1.2 ml min−1. A Waters
600E wavelength absorbance detector produced a chro-
matogram at 474 nm. Total amounts of carotenoids were
calculated using peak area integration values and

Fig. 2 Principal components
loadings (eigenvectors) derived
from a principle components
analysis of reflectance spectra
taken from the ventral surface of
female convict cichlids
A. nigrofasciata. Principal
components PC1, PC2 and PC2
accounted for 88 %, 7 % and 3 %
of the total variance, respectively.
PC2 loads positively across ≈
450–700 nm, and hereafter is our
proxy for yellow-orange
coloration
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analytical standards (CaroteNature, Switzerland) for each
identifiable carotenoid type (Millennium 32, Waters
Corp.).

Statistical analysis

All statistics were performed in R 2.14.1 (RDevelopment
Core Team 2008). Residuals of data were normally
distributed prior to analysis. Tests were considered sig-
nificant when P < 0.05. We used ANOVAwith E. tarda
and fish sex as predictors with no interaction term (as the
E. tarda group was small) to predict log-transformed gut
carotenoid concentrations.

For the laboratory experiment, log transformations
were applied to oxidative stress data prior to analysis to
resolve influential outliers. Fish were excluded from
tests of oxidative stress parameters or HPLC results if
there was not enough tissue recovered to allow for
analysis. Main and interaction effects of diet and
Edwardsiella exposure were tested using ANOVA.
Tukey’s HSD tests were used for pairwise comparisons
among levels of the main effects.

Results

Field study

Wild convict cichlids in the Río Cabuyo were observed
eating brown algae, small invertebrates, and scavenging
on a dead eel. We caught 36 wild fish (24 females, 12
males) and collected their stomach contents via gastric
lavage. There were no sex differences in carotenoid
contents of the gut or in Edwardsiella infection rates
(see below), so in this section males and females are
pooled together. Fish ranged in mass between 1.5–
20.0 g, with a mean of 5.7 g. Each fish had carotenoids
in their stomach contents; HPLC identified α- and ß-
carotenes, tunaxanthin, lutien, astaxanthin, and cantha-
xanthin (Table 1). There were also trace quantities of
unidentified carotenoids.

Gut carotenoids ranged from 0.27–298.18 μg g−1 of
stomach contents with a median of 1.95 μg g−1 of
stomach contents. There was a marginally significant
increase in total carotenoid concentration in the stomach
contents of males, the non-ornamented sex (F2,33 = 5.67,
P = 0.02). Edwardsiella spp. were isolated from the skin
and stomach contents of six fish (16.6 %); four of 24
females were infected and two of 12 males were

infected. Fish infected with Edwardsiella did not have
more carotenoids in their stomach contents than unin-
fected fish (F2,33 = 2.19, P = 0.15).

Laboratory experiment

In the laboratory experiment, 48 female convict cichlids
were maintained on one of the three experimental diets:
control (n = 12), medium carotenoid (n = 19), and high
carotenoid (n = 17). Of these fish, seven on the control
diet, six on the medium carotenoid diet, and nine on the
high carotenoid diet were randomly selected to be ex-
posed to E. tarda, while the remaining fish were ex-
posed to control (sterile) media.

Edwardsiella exposure

We predicted that dietary carotenoids would help fish
eliminate E. tarda bacteria from their skin mucus. Fish
on carotenoid-supplemented diets cleared E. tarda from
skin mucus more rapidly than controls (F5,42 = 9.49,
P < 0.001). Fish in the control group cleared E. tarda
after 11.25 ± 7.47 days, while fish in the medium and
high groups cleared the pathogen after 7.11 ± 6.50 days
and 9.18 ± 6.91 days, respectively. Pairwise comparisons
showed that fish on the medium carotenoid diet cleared
E. tarda significantly faster than the fish on control diets
(P < 0.001), but not significantly faster than fish on the
high carotenoid diet (P = 0.06). Neither were fish on the
high carotenoid diet able to clear the parasite significantly
faster than the fish on the control diet (P = 0.09).

Color and carotenoids

We predicted that fish maintained on carotenoid-limited
diets or infected with E. tarda would experience

Table 1 Carotenoids in the stomachs of wild convict cichlids
A. siquia (μg g−1 of stomach contents). Fish indicates the number
of fish with each carotenoid type in their stomachs

Fish Mean
(μg g−1)

SD
(μg g−1)

Maximum
(μg g−1)

Carotenes 32 17.34 42.56 185.45

Tunaxanthin 5 82.62 94.34 240.00

Lutein 5 11.56 14.75 29.80

Astaxanthin 4 0.42 0.44 0.98

Canthanxanthin 6 38.94 41.64 96.13

Total 36 35.03 68.25 298.18
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decreased coloration (PC2) and carotenoid pigments in
the ventral skin patch. After confirming that there were no
pre-existing differences in coloration among the treat-
ment groups (diet: F2,41 = 1.24, P = 0.30; infection:
F1,41 = 0.13, P = 0.72; diet × interaction: F2,41 = 2.40,
P = 0.10), we found that following the 13-week diet
treatment and experimental infection with E. tarda, there
was a significant interaction effect (diet: F2,41 = 0.62,
P = 0.54; infection:F1,41 = 1.54,P = 0.22; diet × infection:
F2,41 = 6.60, P = 0.003; Fig. 3).

We detected three carotenoid types in the integument
of female convict cichlids via HPLC: ß- or α-carotene
and the xanthophylls tunaxanthin, and astaxanthin.
However, the combined concentration (μg g−1) of ca-
rotenoids in the tissue was unaffected by diet
(F2,36 = 2.28, P = 0.12), infection (F1,36 = 1.52,
P = 0.23), or their interaction (F2,36 = 0.78, P = 0.47).
This was also true when we adjusted for fish standard
length (P ≥ 0.20 for all comparisons).

Oxidative status

As would be expected, we found a strong, positive
relationship between acrolein – our biomarker of oxida-
tive stress – and the antioxidant activity in the liver, as

measured by the TEAC assay (R2 = 0.86, F1,39 = 238.2,
P < 0.001). There was no effect of carotenoid diet,
E. tarda infection, or their interaction on liver acrolein
(diet: F2,36 = 0.66, P = 0.53; infection: F2,36 = 1.83,
P = 0.18; diet × infection: F2,36 = 1.27, P = 0.29).
Similarly, there were no main effects or interaction
effects on oxidative balance, as measured by the resid-
uals from a regression of TEAC against acrolein (diet:
F2,35 = 1.14, P = 0.33; infection: F2,35 = 1.12, P = 0.30;
diet × infection: F2,35 = 1.36, P = 0.27).

Discussion

There was no evidence that fish feeding on high-
carotenoid diets suffer less from Edwardsiella infec-
tions, nor that infected fish sought out carotenoid-rich
foods (Kolluru et al. 2009). Males had slightly more
carotenoids in their guts than females, but males and
females were observed frequently feeding side by side
on the same algae so we doubt that this finding is due to
biologically-relevant differences. Given the abundance
of algae in the Río Cabuyo, and their carotenoid con-
tents (Haugan and Liaaen-Jensen 1994), we conclude
that convict cichlids are not limited by their access to

Fig. 3 Female convict cichlids
A. nigrofasciata were fed one of
three carotenoid diets and then
infected with Edwardsiella tarda
or control medium. There was a
significant interaction between
diet and infection status such that
fish on the medium diet showed
less yellow-orange ventral
coloration when infected
(F2,41 = 6.60, P = 0.003). This
relationship is reversed in the
control and high-carotenoid diet
groups, with infected fish
showing a slightly higher mean
orange color (albeit not
significantly)

446 Environ Biol Fish (2016) 99:439–449



dietary carotenoids in this environment. Carotenoid lim-
itation may occur at other steps in the assimilation
pathway, however, such as absorption and transporta-
tion (Fig. 1). Alternatively, the Edwardsiella endemic to
free-living convict cichlid populations may not be viru-
lent enough to exert selection pressure on foraging
behavior.

In a similar study, Kolluru et al. (2006) found that
levels of the nematodeGyrodactylus turnbulliwere lowest
in guppies (Poecilia reticulata) fed a medium carotenoid
diet. Those authors speculated that excessive dietary ca-
rotenoids could suppress host immunity (perhaps by act-
ing as prooxidants; see below) or benefit the parasites
(e.g., Perrot-Minnot et al. 2011). Our findings are also
consistent with those of Amar et al. (2000), who found
that intermediate doses of dietary ß-carotene caused sig-
nificant increases in plasma immunoglobulins and serum
complement activity in rainbow trout Oncorhynchus
mykiss. In one of the few studies investigating the
specific effect of carotenoids on Edwardsiella spp., Kim
et al. (2012) fed olive flounder (Paralichthys olivaceus)
control diets or diets supplemented with 1–3 %
astaxanthin, a xanthophyll carotenoid. Then they injected
fish with E. tarda and found that flounder maintained on
the astaxanthin diets had greater non-specific immune
responses and suffered reduced cumulativemortality com-
pared to fish on the control diet; they observed no signif-
icant differences among the astaxanthin treatment groups.
Taken together, these studies suggest a threshold above
which dietary carotenoids provide fish with no benefit
against parasites, and may in fact be detrimental.

We found no evidence of a main effect of carotenoid
diet on the yellow-orange ventral coloration (PC2) in
female convict cichlids in the laboratory experiment.
This finding conflicts with an earlier study in our labo-
ratory (Brown et al. 2013). In that study, Brown et al.
(2013) maintained fish on diets containing ß-carotene as
well as the xanthophylls lutein and zeaxanthin. The
authors found that fish maintained on a diet similar in
total carotenoids to the medium carotenoid in the current
study (23 μg g−1) increased in yellow-orange coloration
along their ventral surface. They also found that fish fed
a less-concentrated diet (26.5 ng g−1) were even more
yellow-orange. The discrepancy between the two stud-
ies could be due to the combination of carotenoids used
by Brown et al. (2013), or because both the medium-
and high-carotenoid diets in the current study were more
concentrated than the optimal level for absorption and
color expression.

The mechanism by which dietary carotenoids facili-
tate the clearance of E. tarda infections is unknown.
Carotenoids could support immunity by facilitating or
allowing production of endogenous oxidants from the
innate immune system, or becoming pro-oxidant them-
selves (Palozza 1998; Palozza et al. 2003; El-Agamey
et al. 2004). Mechanisms for pro-oxidant action of ca-
rotenoids occur in the presence of chronic oxidative
stress, oxygen exposure, or pharmacologic carotenoid
concentrations. In vitro studies of ß-carotene have
shown that, while it is an effective quencher of some
types of ROS, hydrogen peroxide may react with ß-
carotene to form carbon-centered carotenoid radicals
(Woods et al. 1999; Tanumihardjo 2012). In the current
study we found no evidence that our experimental diets
affected oxidative damage (acrolein) or antioxidant ca-
pacity (TEAC), therefore we cannot conclude that pro-
oxidant activity of ß-carotene decreased pathogen clear-
ance rate. Future work should consider the potential
benefits of short-term oxidative stress in addition to
long-term dangers, as well as quantify vitamin A con-
version in the gut to address the possibility that ß-caro-
tene supplementation increases the antioxidant pool
with directly enhancing the immune system.

Our field study found considerable individual varia-
tion in the carotenoid content of convict cichlid stomach
contents, which were unrelated to Edwardsiella tarda
infection. Furthermore, our field study provided little
evidence that dietary carotenoids were limited in the
natural environment. Our laboratory study found an
interaction between dietary carotenoids and E. tarda
infection, but not in fish on the carotenoid-limited diet
as predicted by the carotenoid tradeoff hypothesis. The
results presented here are consistent with a growing
body of evidence that individual variation and genet-
ics may be more influential than diet in carotenoid
allocation and carotenoid-based signaling (Hill 2011).
Individual genetic differences in carotenoid lipopro-
tein transporters, for example, may explain individual
variation in carotenoid allocation dynamics (Lee et al.
1999; Hill and McGraw 2006; McGraw and Parker
2006). Genetic and gene-environment interaction in-
fluences on lipid and carotenoid transporter expres-
sion should be considered in future studies of
carotenoid-based body coloration. Elucidation of the
mechanisms controlling individual variability in ca-
rotenoid allocation could determine what factors re-
inforce honesty in carotenoid-based ornamentation
and how ornaments evolve.
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