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Abstract Female ornaments are present in many species,

and it is more and more accepted that sexual or social

selection may lead to their evolution. By contrast, the

information conveyed by female ornaments is less well

understood. Here, we investigated the links between female

ornaments and maternal effects. In birds, an important

maternal effect is the transmission of resources, such as

carotenoids, into egg yolk. Carotenoids are pigments with

antioxidant and immunomodulatory properties that are

crucial for females and developing offspring. In blue tits,

we evaluated whether ultraviolet (UV)/blue and yellow

feather colouration signals a female’s capacity to allocate

carotenoids to egg yolk. Because mounting an immune

response is costly and trade-offs are more detectable under

harsh conditions, we challenged the immune system of

females before laying and examined the carotenoid level of

their eggs afterward. A positive association between

feather carotenoid chroma and egg carotenoid level would

be expected if yellow colouration signals basal immunity.

Alternatively, if female colouration more generally reflects

maternal capacity to invest in reproduction under chal-

lenging conditions, then other components of colouration

(i.e. yellow brightness and UV/blue colouration) could be

linked to maternal capacity to invest in eggs. No associa-

tion between egg carotenoid levels and UV/blue crown

colouration or female yellow chest chroma was found; the

latter result suggests that yellow colouration does not sig-

nal immune capacity at laying in this species. By contrast,

we found that, among females that mounted a detectable

response to the vaccine, those with brighter yellow chests

transmitted more carotenoids into their eggs. This result

suggests yellow brightness signals maternal capacity to

invest in reproduction under challenging conditions, and

that male blue tits may benefit directly from choosing

brighter yellow females.

Keywords Plumage colouration � Female ornaments �

Immune challenge � Maternal effects � Sexual selection

Introduction

In many species, conspicuous traits are present both in

males and females (Kraaijeveld et al. 2007; Clutton-Brock

2009). These traits in females have long been considered

non-functional byproducts of sexual selection on male

traits, resulting from a genetic correlation between male

and female traits (Lande 1980). Alternatively, it may be

that sexual and/or social selection is acting on both male

and female traits (Kraaijeveld et al. 2007; Clutton-Brock

2009; Tobias et al. 2012). Like male ornaments, female

ornaments could signal reproductive or survival benefits

and be involved in male mate choice (Amundsen 2000;

Clutton-Brock 2009; Edward and Chapman 2011). Male

mate choice has received theoretical support (Johnstone
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et al. 1996; Kokko and Johnstone 2002; Servedio and

Lande 2006; Hooper and Miller 2008) and has been doc-

umented and demonstrated in various taxa: fishes

(Amundsen and Forsgren 2001), insects (Byrne and Rice

2006), reptiles (Lebas and Marshall 2000), mammals

(Domb and Pagel 2001), and birds (Amundsen et al. 1997;

Griggio et al. 2005; Torres and Velando 2005). Male mate

choice is particularly expected to occur in species with

biparental care, but some studies have shown that it can

also occur in species with no parental care. For instance,

male differential allocation attributable to female pheno-

type has been shown in the fowl species, Gallus gallus

(Cornwallis and O’Connor 2009).

Males may receive direct or indirect benefits (good

genes) by mating with more ornamented females. In order

to understand the nature of these benefits, it is essential to

determine the information that is signalled by female

ornaments. Previous correlative studies have shown both

positive and negative relationships between female orna-

ments and proxies of female quality, such as female body

condition, age, immunocompetence, survival, feeding rate,

or fecundity (e.g. reviewed in Amundsen 2000 and see

Simmons and Emlen 2008; Gasparini et al. 2009; Hanssen

et al. 2009; Lehikoinen et al. 2009; Weiss et al. 2009;

Boulet et al. 2010; Gladbach et al. 2010; Huchard et al.

2010; Baldauf et al. 2011 for recent results in birds,

mammals, reptiles, fishes, and insects). To date, experi-

ments are rarer but more consistently report links between

female ornaments and maternal quality (e.g. Roulin et al.

2000, 2001; Blount et al. 2002; McGraw et al. 2005;

Doutrelant et al. 2008; Gasparini et al. 2009; Kekäläinen

et al. 2010; Martinez-Padilla et al. 2011; but see Smiseth

and Amundsen 2000).

An essential component of female quality for males is

the maternal capacity to invest in progeny (Blount 2004).

Prenatal maternal effects (Mousseau and Fox 1998) are

non-genetic mechanisms by which females can affect off-

spring phenotypes and fitness. In egg-laying species, they

can involve the transmission of important components into

eggs, e.g. immunoglobulins, hormones, or carotenoids

(Bortolotti et al. 2003; Groothuis et al. 2005; Boulinier and

Staszewski 2008).

Carotenoids present in egg yolks play a central role

during embryo development and at hatching. They are

immunomodulators that regulate and stimulate the immune

system (i.e. the production of lymphocytes and the phag-

ocytic ability of neutrophils and macrophages: Lozano

1994; Olson and Owens 1998; Møller et al. 2000; Krinsky

2001). There are positive relationships between carotenoid

levels in yolks (or carotenoid availability during laying)

and offspring health, survival, growth, and fledging success

(e.g. Blount et al. 2002; Biard et al. 2005; McGraw et al.

2005; Ewen et al. 2009). Indeed, embryo and nestling

development are associated with elevated oxidative stress

because of rapid growth. Thus, maternal carotenoids are

particularly important for detoxification at this stage (Surai

et al. 1999). In addition, because of their role in the reg-

ulation and activation of the immune system, maternal

carotenoids can have a positive effect on nestling responses

to parasites. For instance, higher levels of carotenoids in

eggs enhance the offspring immune response (Saino et al.

2003; Biard et al. 2007), and nestlings hatched from eggs

with higher levels of carotenoids are better able to com-

pensate for the negative effects of ectoparasitism (Ewen

et al. 2009).

Carotenoids are also important for adult health. To date,

most experimental studies using carotenoid supplementa-

tion found that carotenoid-supplemented individuals have a

stronger immune response than controls (e.g. Surai 2002;

Blount et al. 2003; Hasselquist and Nilsson 2012 for some

reviews and McGraw and Ardia 2003; McGraw et al. 2011;

Peluc et al. 2012). Carotenoids can only be acquired from

food and are often considered a limited resource subject to

trade-offs. This is especially true during egg laying, when

female metabolism is high (e.g. Nilsson and Raberg 2001).

For instance, in blue tits (Cyanistes caeruleus), carotenoid

supplementation during egg laying resulted in a significant

increase in the carotenoid concentration in egg yolks (Biard

et al. 2005).

The trade-off between carotenoid allocation to eggs and

self-maintenance is predicted to be modulated by female

characteristics and immune activity. For instance, Navara

et al. (2006) and Williamson et al. (2006) found a positive

relationship between female condition and carotenoid

transfer, and Saino et al. (2002a) showed that female

immune status influences carotenoid concentration in eggs,

with vaccinated females transmitting fewer carotenoids. In

addition, because carotenoids are of crucial importance for

nestlings and maternal condition, female ornaments might

be predicted to signal a female’s capacity to transfer

carotenoids into eggs to potential mates, either because

highly ornamented females have higher basal immunity or

because they are in better condition and can thus invest

more in offspring.

To date, only a handful of correlative studies have

investigated the link between female ornaments and egg

carotenoid content. Because certain types of integument

colouration rapidly mirrors changes in condition (Faivre

et al. 2003; Velando et al. 2006), a strong association is

expected between female ornaments and carotenoid con-

tent because ornament production, immunity, and repro-

duction occur at the same period. The two experimental

studies that have investigated this topic support this pre-

diction; they found positive relationships between female

integument colouration and the level of beneficial com-

ponents in eggs following carotenoid supplementation (in
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black-backed gulls, Larus fuscus, Blount et al. 2002; in

zebra finches, Taeniopygia guttata, McGraw et al. 2005).

For ornaments that are produced during the non-breeding

season, predictions are more complex as these ornaments

are linked to conditions occurring long before egg pro-

duction. Correlative studies that investigated the links

between such ornaments and egg carotenoid content pro-

vided mixed results: there was no correlation between

feather yellow colouration and egg carotenoid level in blue

and great tits (Biard et al. 2005; Szigeti et al. 2007; Remes

et al. 2011), but a positive correlation was found between

egg carotenoid level and the immaculateness of the white

cheek patch in great tits (Remes et al. 2011).

We used a handicapping approach to investigate whe-

ther the yellow and UV/blue colouration of feathers indi-

cates a female’s capacity to allocate carotenoids in blue

tits. We challenge the immune system of females before

laying and examined the carotenoid level of their eggs

afterward.

We predicted:

1. A stronger relationship between ornament colouration

and egg carotenoid content in the experimental group

than in the control group. Trade-offs, as well as links

between traits and estimates of individual quality, are

more detectable when environmental conditions are

harsher (Van Noordwijk and de Jong 1986; Doutrelant

et al. 2008; Morales et al. 2008). As a consequence, the

importance of carotenoids is clearer when adults are

faced with immune challenges as opposed to when

they are experiencing normal conditions (Costantini

and Møller 2008).

2. A link between feather carotenoid chroma and egg

carotenoid content if carotenoid-based colouration

signals immune capacity. Feathers with more carote-

noids have higher chroma (Isaksson et al. 2008b). So,

if females that are able to deploy carotenoids to their

plumage at moult have high basal immunity, we would

expect the yellow chroma of the plumage to be

positively associated with egg carotenoid content.

3. A link between egg carotenoid content and other

components of yellow or UV/blue colouration if,

alternatively, female colouration generally reflects

maternal capacity to invest in reproduction under

challenging conditions. Mounting an immune response

is costly (Lochmiller and Deerenberg 2000; Bonneaud

et al. 2003). As a result, some components of

colouration reflecting female condition or female

capacity to invest in reproduction could be linked to

maternal capacity to invest in eggs, independently of

the carotenoid-based trade-off between immunity and

reproductive investment in signalling and offspring. A

previous experimental study in this species suggested

that yellow brightness is an important colour parameter

that indicates maternal capacity to invest in reproduc-

tion under challenging conditions: females experimen-

tally forced to produce a replacement clutch produced

more eggs and recruited more offspring when brighter

in colour (Doutrelant et al. 2008).

Materials and methods

Model system and study population

Blue tits have a slightly dimorphic structural UV/blue

crown colouration, but monomorphic yellow carotenoid-

based chest colouration (Andersson et al. 1998; Hunt et al.

1998; Doutrelant et al. 2008). The UV/blue crown appears

to be involved in mutual mate choice (Andersson et al.

1998; Hunt et al. 1999). It affects maternal decisions and

allocation to nestlings (Sheldon et al. 1999; Delhey et al.

2003; Griffith et al. 2003; Limbourg et al. 2004; Johnsen

et al. 2005; Kingma et al. 2009 but see Dreiss et al. 2006)

as well as intraspecific competition in both sexes (Alonso-

Alvarez et al. 2004; Rémy et al. 2010; Vedder et al. 2010;

Midamegbe et al. 2011). By contrast, to date, yellow col-

ouration (mostly brightness) seems more linked to parental

quality (Senar et al. 2002; Doutrelant et al. 2008).

The blue tit population we studied is located in Mon-

tarnaud, in the south of France (43°400N, 03°400E), and

occurs in a broadleaved deciduous forest of downy oaks

(Quercus pubescens). The population has been followed

since 1991 and breeds in Schwegler B1 nest boxes. Each

year, breeding birds are captured and their reproduction is

monitored (Blondel et al. 2006). The average clutch size in

our population is around ten (Doutrelant et al. 2008). No

egg dumping has ever been observed, and 14 % of off-

spring across 46 % of the nests are the product of extra-pair

copulations (Charmantier and Blondel 2003).

Bird capture and treatment

Using mist nets, we captured 45 females near their nest

boxes prior to egg laying (10–20 March 2008). Females

were randomly assigned to one of two groups: vaccinated or

control. Twice as many females were included in the vac-

cinated group as in the control to ensure that the final sample

size included enough females that had both laid eggs and

mounted a measurable immune response. Indeed, the stim-

ulation of an immune response might prevent egg-laying

because it is physiologically costly and/or vaccination might

not work in some individuals (Hamers et al. 2002).

We vaccinated female blue tits against the Newcastle

disease virus (NDV). NDV is an avian virus that has been
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previously used in avian studies (e.g. Saino et al. 2002b;

Staszewski et al. 2007; Staszewski and Siitari 2010; Gar-

nier et al. 2012). It is frequently found in domestic birds but

has an extremely low prevalence in natural bird popula-

tions (Camenisch et al. 2008). For instance, the World

Organisation for Animal Health (OIE) reports that no

infected birds were found among the 3,049 wild birds

tested in Switzerland. Vaccinated females received sub-

cutaneous injections of 10 lL of NDV, an inactivated

vaccine (Nobivac Paramixo; Intervet, France) (nvaccinated

females = 30). Control females were injected with an iden-

tical volume of phosphate-buffered saline (PBS) (ncontrol

females = 15).

At the time of a bird’s capture, its tarsus length was

measured with a digital calliper to the nearest 0.02 mm,

and its body mass was measured to the nearest 0.5 g using

a Pesola spring balance. In addition, six blue feathers from

the crown and eight yellow feathers from the chest were

collected for colour measurements (see below). Bird sex

and age (1 year old versus[1 year old) were determined

using the colour of the wing coverts (Svensson 1992).

Before their release, females were ringed with a uniquely

numbered metal ring from the French Museum of Natural

History (Centre de Recherches par le Baguage des Popu-

lations d’Oiseaux) that was used to identify them at the end

of the laying period; the identity of previously ringed

females was noted.

Nest monitoring and egg collection

Nest boxes were inspected every 4 days starting on 20

March 2008. Once the first egg had been laid in the pop-

ulation, nests were inspected every 2 days, and eggs were

marked in order to know their order in the laying sequence

(±1 day) within the clutch (blue tits lay one egg per day).

One day after the clutch size stopped increasing, and just

after the start of incubation, we recaptured the breeding

females; we identified them by ring number and deter-

mined their experimental group (control or vaccinated). All

their eggs were then collected. A total of 22 of the 30

vaccinated females and 12 of the 15 control females had

been recaptured at the end of the egg-laying period.

Females injected with NDV (vaccinated) or PBS (control)

had similar probabilities of initiating egg laying (respec-

tively 0.80 and 0.73, Pearson’s v
2-test: v

2
= 0.24,

P = 0.62).

Verifying vaccination response

It has been demonstrated that if a female has antibodies

circulating in her blood, she will systematically transfer

them to her eggs (Grindstaff et al. 2003; Grindstaff 2008).

To evaluate if all vaccinated females responded to vacci-

nation, we analysed NDV levels in egg yolks [see Elec-

tronic supplementary material (ESM) online]. We detected

anti-NDV antibodies in the eggs of 13 out of the 22 vac-

cinated females. There was no difference in age, tarsus

length, condition at treatment, or blue or yellow colour-

ation for females that transferred anti-NDV antibodies

versus those that did not (all P[ 0.10). They also had the

same return rate (P = 0.40).

The absence of anti-NDV antibodies in some vaccinated

females may be due to several reasons, such as genetic

background, poor somatic condition, or improperly

implemented vaccination (Hamers et al. 2002; Aguilera

and Amat 2007; Staszewski et al. 2007; Krams et al. 2012).

As a consequence, some of the nine females that did not

transfer anti-NDV antibodies to their eggs may or may not

have paid the cost of mounting an immune response. As

our aim was to compare females that unambiguously paid

the cost of mounting an immune response to the controls,

we excluded this heterogeneous group of nine non-

responsive females from our statistical analyses. Whether

these nine females were included or not did not change the

results: the same variables were retained during model

selection. Our experimental group was thus redefined to

comprise only the 13 responsive females, and we use the

term ‘‘vaccinated females’’ to refer to them solely from this

point forward.

Vaccinated females and control females had similar laying

dates (F1,23 = 0.06, P = 0.81), clutch sizes (F1,22\ 10-3,

P = 1), plumage colouration (yellow brightness, F1,23 =

2.72,P = 0.11; yellow chroma,F1,23 = 1.63,P = 0.21; blue

brightness, F1,23 = 0.24, P = 0.63; blue hue, F1,23 = 3.37,

P = 0.08), tarsus length (F1,23 = 0.67, P = 0.42), and

body mass at the time of treatment (F1,22 = 0.50, P = 0.48).

The number of days between the treatment (vaccination

or PBS) and the first egg laid varied between 14 and

33 days (mean ± SD = 24.08 ± 5.57 days) andwas similar

for control and vaccinated females (F1,22 = 1.27, P = 0.27).

Determination of carotenoid levels in egg yolks

Yolk carotenoid concentrations were determined using

colourimetry (Strand 1998). For carotenoid extraction,

50–70 mg of the egg yolk was mixed with a corresponding

volume of acetone (1 lL of acetone for 0.1 mg of yolk).

Samples were kept overnight at -20 °C and then centri-

fuged at 13,000g at 4 °C for 10 min. We determined the

optical density (OD) at 450 nm of 125 lL of the super-

natant using a microplate photometer (Multiskan Ascent;

Therma Oy, Finland). Lutein is the main carotenoid in blue

tit eggs (Biard et al. 2005; Isaksson et al. 2008a). We

therefore used a serial dilution of a commercial solution of

standard lutein (xanthophyll Sigma X-6250) to generate a
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standard curve and determine the relationship between the

OD value and the carotenoid concentration in the egg

yolks. The carotenoid concentration is expressed in

micrograms per gram of egg yolk.

We analysed the carotenoid content of 45 eggs that tested

positive for anti-NDV antibodies (from one to seven eggs

per vaccinated female). We analysed 47 eggs from the 12

control females (from three to six eggs per control female).

The egg order in the laying sequence of the vaccinated

versus control females was similar within their respec-

tive clutches (F1,23 = 3.30, P = 0.08, mean egg order in

the laying sequence = 7.5, range = 1–13 for vaccinated

females; mean egg order in the laying sequence = 6.3,

range = 1 to 13 for control females). Order in the laying

sequence of eggs and the time delay between treatment and

laying did not affect carotenoid content (respectively,

F1,66 = 0.003, P = 0.96, F1,65 = 0.47, P = 0.50). The

number of days the eggs were incubated had a significant

effect on carotenoid content (F1,23 = 8.41, P = 0.01).

Differences in yolk carotenoids were significantly

greater among clutches than within clutches (F24,67 = 8.70,

P\ 10-3), a result previously reported in blue tits and other

species (e.g. Szigeti et al. 2007; Isaksson et al. 2008a;

Holveck et al. 2012).

Colour measurement and colour variables

Feather colouration was measured following the same pro-

cedure as in Doutrelant et al. (2008, 2012). Feather reflec-

tance was measured with an AVASPEC-2048 spectrometer

(Avantes, the Netherlands); a deuterium-halogen light

source (AVALIGHT-DH-S lamp; Avantes) that covers the

300- to 700-nm spectral range visible to blue tits (Hart et al.

2000); and a 200-lm fibre optic probe. Colour spectra

information was extracted using Avicol software version 3

(Gomez 2009). For both colour patches (UV/blue and yel-

low), brightness was calculated as the mean reflectance over

the 300- to 700-nm range (defined as the area under the curve

divided by the width of the interval 300–700 nm) so as to

include the entire range of colour to which birds are sensi-

tive. Chroma and hue were calculated based on the shape of

the reflectance spectra (e.g. Andersson et al. 1998; Delhey

et al. 2003). For UV/blue crown colouration, UV chroma

was the average of the reflectance between 300 and 400 nm

divided by the mean reflectance over the 300- to 700-nm

range. Hue was the wavelength at maximum reflectance. For

yellow chest colouration, chroma was the difference

between the maximal reflectance between 500 and 700 nm

and the reflectance at 450 nm divided by the average

reflectance [Rmax(500–700 nm)-R450]/RAV. This measure is

strongly linked to the level of carotenoids incorporated in

feathers because carotenoids maximally absorb around

450 nm (Andersson and Prager 2006; Isaksson et al. 2008b).

We did not calculate hue parameters for yellow colouration

because of the double-peaked nature of these carotenoid-

based spectra. Our measurements were significantly

repeatable with all P\ 0.0001 (Lessells and Boag 1987)

(UV/blue crown brightness repeatability R = 0.65 and hue

R = 0.75; yellow chest brightness R = 0.44 and chroma

R = 0.68).

Statistical analyses

We investigated the link between female colouration and

egg carotenoid levels in control females (injected with PBS)

and vaccinated females (measurably responded to NDV

vaccine). The dependant variable was yolk carotenoid

concentration, which was log transformed to normalize the

distribution. As several eggs from the same clutch were

included in the analyses, we always included the identity of

the female as a random variable. The explanatory variables

were treatment (vaccination versus control), female plum-

age colouration (UV/blue crown—brightness, hue, and UV

chroma; yellow chest—brightness and chroma), and female

characteristics that may affect female carotenoid allocation:

female body condition, female tarsus length, and female age

(two classes: 1 year old versus[1 year old). Female body

condition was estimated by examining the effect of body

mass (measured the day of vaccination) using a type III

model in which tarsus length was one of the explanatory

variables (Garcia-Berthou 2001; Green 2001). In addition,

we included the interactions between female plumage col-

ouration and treatment. We also included as explanatory

covariables the laying date of the first egg, clutch size

residuals (derived from the regression of clutch size on

laying date), and the stage of incubation. All correlations

between explanatory variables or covariables were low and

thus unlikely to lead to collinearity problems (-0.53\ all

q\ 0.36, all P from 0.9 to\0.001; Belsley et al. 2004).

Data were analysed in R 2.8.1 (Crawley 2005) using

linear mixed models (LMMs). We began with full models

and then employed backward selection procedures with

type III errors to obtain the most parsimonious model

containing only significant effects (P B 0.05). Because of

the high number of variables included in the models, we

also used a forward selection procedure in which we first

tested the effect of all the variables and interactions sepa-

rately and then included the variables and interactions with

a P B 0.05. As the results were similar, we present those

found with the backward procedure.

Results

We found a significant interaction between the experi-

mental treatment (vaccinated or control) and female yellow
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chest brightness on the carotenoid levels of egg yolks

(Table 1). This indicates that although vaccinated females

allocated fewer carotenoids to their eggs than control

females (Table 1; estimate ± SE: -1.31 ± 0.31), this

carotenoid allocation was different for bright and dull

yellow females in both treatment groups.

When running the model separately for vaccinated and

control females (and including all the significant factors

listed in Table 1), it appears that yolk carotenoid concen-

tration significantly increased with yellow chest brightness

in vaccinated females (estimate ± SE = 0.04 ± 0.01,

F1,5 = 7.88, P = 0.038; Fig. 1), whereas yellow bright-

ness was not correlated with yolk carotenoid concentration

in control females (estimate ± SE -0.04 ± 0.02, F1,5 =

5.48, P = 0.066, Fig. 1).

The results of our analysis also show that higher levels

of yolk carotenoids were found in females that were older,

had longer tarsi, laid later, laid smaller clutches, and were

in poorer condition at the time of treatment (Table 1; Figs.

S2, S3, S4, S5, S6 in the ESM). No effects of UV/blue

crown hue and brightness or yellow chest chroma were

found (all P[ 0.13).

Discussion

The aim of our study was to experimentally test whether

female colouration signals maternal capacity to invest in

reproduction. We used a handicapping experiment in which

we challenged the immune system of female birds, and

then related carotenoid content in their eggs to their feather

colouration. If feather carotenoid chroma were linked to

female basal immunity, we predicted an association

between this colour trait and egg carotenoid content.

However, no association was found. Alternatively, if

female colouration reflects maternal condition and/or

maternal capacity to invest in reproduction, we expected

other components of colouration to be linked to egg

carotenoid content. We found an interaction between vac-

cination against NDV and female yellow brightness. Im-

munochallenged females transferred fewer carotenoids to

their eggs than did control females, and brighter yellow

females transmitted more carotenoids to their eggs than

duller females in the vaccine-treated but not in the control

group. This result suggests that, under challenging condi-

tions, brighter females are able to invest more in repro-

duction than dull ones.

In tits and other bird species, yellow feather chroma

reflects carotenoid deposition (e.g. Saks et al. 2003a;

Andersson and Prager 2006; Shawkey et al. 2006; Isaksson

et al. 2008b; Peters et al. 2008) and is condition dependent

Table 1 Results from linear mixed models for carotenoid transfer

Yolk carotenoid levels Estimate SE df F P

Treatment (vaccinated\ control) -1.31 0.31 1, 15 0.02 0.001

Female yellow chest brightness -0.03 0.01 1, 15 0.05 0.021

Female body mass at time of treatment -0.18 0.05 1, 15 5.96 0.046

Female tarsus length 0.59 0.08 1, 15 35.88 \10-3

Female age (adult[ yearling) -0.22 0.10 1, 15 8.96 0.040

Egg laying date 0.02 0.007 1, 15 20.84 0.005

Clutch size residuals -0.09 0.02 1, 15 24.65 0.002

Treatment 9 female yellow brightness 0.09 0.02 1, 15 20.63 \10-3

Parameter estimates ± SE, df, F values, and P values are only indicated for variables included in the final model with P B 0.05. n = 91 eggs laid

by n = 24 females: 44 eggs from 12 vaccinated females (one female was excluded due to a missing body mass value) and 47 eggs from 12

control females

Fig. 1 Relationship between egg carotenoid concentration and

female blue tit yellow chest brightness in control and vaccinated

females. Statistics conducted in each group (see ‘‘Results’’ section)

showed that yolk carotenoid concentration significantly increased

with female yellow brightness in immune-challenged females but not

in control females (linear regression lines are shown)
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(blue tits, Doutrelant et al. 2012; other species, e.g.

McGraw et al. 2001; Hill et al. 2004; Shawkey et al. 2006;

Peters et al. 2008). If females able to deploy more

carotenoids to their plumage at moult have high basal

immunity, we would predict that they would allocate more

carotenoids to their eggs following an immune challenge.

However, given the fact that yellow feather chroma at

moult does not relate to egg carotenoids suggests that this

colour parameter is not a reliable signal of female immune

capacity at laying, maybe because immunity is highly

seasonal (Hawley and Altizer 2011).

The positive relationship between yellow chest bright-

ness and egg carotenoid content under challenging condi-

tions may be interpreted in two ways. Our prediction was

that if female colouration generally reflects maternal

capacity to invest in reproduction under challenging con-

ditions, then components of colouration other than yellow

chroma could be linked to the maternal capacity to invest

in eggs. Under this hypothesis, the positive link between

yellow brightness and egg carotenoid level in immuno-

challenged females would indicate that brighter yellow

females are better-quality mothers who can invest more in

reproduction. However, because pigment-based colours are

subtractive (i.e. more deposited pigment absorbs more

light, Andersson and Prager 2006), individuals that are

brighter yellow are sometimes considered to contain fewer

carotenoids in their feathers (Andersson and Prager 2006).

An alternative hypothesis is that, if brighter females have

fewer carotenoids in their plumage, brighter yellow

females are females of lower quality with lower survival

prospects who consequently invest more in current repro-

duction when faced with disease (i.e. terminal investment

hypothesis, Clutton-Brock 1984; Bonneaud et al. 2004;

Reaney and Knell 2010; Bowers et al. 2012).

At this stage, although it is not possible to fully disen-

tangle these two explanations, we have more arguments in

favour of the hypothesis that brightness reflects maternal

capacity to invest in reproduction under challenging con-

ditions. First, in disagreement with the terminal investment

hypothesis, we found that within vaccinated females,

brighter yellow females had a significantly higher local

survival rate (i.e. return rate) than duller ones (general linear

models, estimate ± SE = -0.28 ± 0.11, P = 0.01). Sec-

ond, egg carotenoid content is positively linked to two out

of three recognised proxies of quality—age and tarsus

length. Last, most studies that have investigated the link

between feather carotenoid content and brightness did not

find a negative relationship (Saks et al. 2003a; Shawkey

et al. 2006; Isaksson et al. 2008b; Hill et al. 2009), and it has

been suggested that yellow brightness may partly result

from feather structure (Shawkey and Hill 2005) and mela-

nin deposition in feathers (Isaksson et al. 2008b). Thus,

yellow chest brightness might signal something else besides

feather carotenoid content, which could explain why in blue

tits (Senar et al. 2002; Doutrelant et al. 2008 but see Garcı́a-

Navas et al. 2012) and other species (Saks et al. 2003b;

Reudink et al. 2009), it is yellow brightness and not carot-

enoid chroma that appear to signal parental investment. So,

most elements are in favour of the hypothesis that brighter

females are higher-quality mothers, but clearly more studies

are needed to clarify the physiological mechanisms linking

the yellow brightness of plumage to the maternal transfer of

carotenoids.

Variability in carotenoid transfer capacities, and possi-

bly the ability to mount an immune response, has been

related to several factors such as genetic differences, stress

level, androgen level, and behavioural differences (Bouli-

nier and Staszewski 2008; Owen et al. 2010; Ardia et al.

2011; Krams et al. 2012). It might consequently be inter-

esting to examine the relationships between brightness and

these factors. In particular, it would be highly interesting to

study hormonal and behavioural differences, as previous

results have shown that brighter yellow females are less

aggressive in our population (Midamegbe et al. 2011).

Such work would enhance our understanding of the

mechanisms underlying the positive relationships found,

but would not change the conclusion that yellow brightness

is linked to proxies of parental investment in blue tits

(Senar et al. 2002; Doutrelant et al. 2008; this study) and

other species (Saks et al. 2003b; Reudink et al. 2009), and

thus may be a signal of parental investment.

In the control group, brighter yellow females tended to

allocate fewer carotenoids to their eggs. However, this

result was not significant and confirmed results obtained in

other years or study populations (Biard et al. 2005; Szigeti

et al. 2007; Holveck et al. 2012) where no relationship

between yellow colouration and egg carotenoid concen-

tration was found.

We found two results suggesting that carotenoids may

be limiting in our populations. Females laying bigger

clutches had lower carotenoid concentrations in their eggs,

and females laying later transferred more carotenoids to

their eggs (see Szigeti et al. 2007 for identical results).

The concurrent increase in yolk carotenoids with laying

date can be explained by the seasonal increase in the

availability of carotenoid-rich food, such as leaf-eating

Lepidopteran caterpillars (Partali et al. 1987; Isaksson and

Andersson 2007). Indeed, Tummeleht et al. (2006) found

that great tit plasma carotenoid levels increased seasonally

and in tandem with caterpillar availability. This hypothesis

of carotenoid limitation fits with the results obtained by

Biard et al. (2005) in blue tits and by other studies in

another species (e.g. Blount 2004). However, it should be

noted that the egg carotenoid levels in our blue tit study
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population (30.96 ± 13.76 lg/g egg yolk, range 11.84–

75.44) are higher than those reported for another blue tit

population (Biard et al. 2005, 21 ± 1.6 lg/g, range

9.0–56.9) and great tits in Sweden (Isaksson et al. 2008a,

about 15 lg/g), but are lower than those in great tits in

Estonia (Hõrak et al. 2002, about 48 lg/g). Obviously,

additional work will be required to determine whether or

not carotenoids are limiting in our unchallenged study

population.

We did not find a significant link between UV/blue

crown colouration and yolk carotenoids. In Doutrelant

et al. (2008), UV/blue crown colouration was positively

linked to female survival but not female reproductive

success. In addition, Midamegbe et al. (2011) found that

UV/blue crown colouration can be used as a badge-of-

status in the context of female-female competition. It is

thus likely that female UV/blue colouration signals another

aspect of female quality, such that yellow chest colouration

and UV/blue crown colouration would be complementary

signal traits. In many species, it is common for different

traits to signal different components of quality (Candolin

2003; Roulin 2009; Bro-Jorgensen 2010; Gomez et al.

2011).

In conclusion, our results suggest that carotenoid-based

colouration does not signal female immune capacity during

reproduction and that plumage colouration indicates

maternal capacity to invest in reproduction under adverse

reproductive conditions. Such signals could directly benefit

males and be sexually selected. Experiments testing male

mate choice are now needed to validate this hypothesis.

Moreover, experiments designed to determine the physio-

logical mechanisms explaining the observed links between

yellow brightness and maternal propensity to invest in

reproduction under challenging conditions are needed.

More generally, our results promote the current re-evalu-

ation (Kraaijeveld et al. 2007; Clutton-Brock 2009) of the

role of sexual selection in the evolution of female orna-

ments. They suggest that maternal effects are important

elements to consider when investigating the signalling

content of female ornaments.
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