Original Article

Fiery frills: carotenoid-based coloration predicts contest success in frillneck lizards

David G. Hamilton, Martin J. Whiting, and Sarah R. Pryke

INTRODUCTION

Conspicuous color signals are commonly used by a wide diversity of animals to advertise some specific aspect of their competitive ability. In particular, orange and red colors are often used as an aggressive signal to potential rivals. The iconic Australian frillneck lizard (Chlamydosaurus kingii) has a large and extensible frill that varies geographically in the extent of yellow, orange, and red present. Focusing on the red-orange lizards found in Western Australia, we first established that, in contrast to most lizards studied to date, the red-orange–colored frill is carotenoid rather than pterin based. Second, we measured chromatic and achromatic aspects of male frills before staging dyadic contests between males to determine whether color is used to signal fighting ability. Both chromatic and achromatic measures of the red-orange patches on the lizard’s frills, as well as similarly colored patches on their throats, were reliable predictors of competitive ability; males possessing more colorful displays dominated size-matched competitors in dyadic contests. Apart from large differences in body size and mass (>10%), no other colorimetrics (e.g., white patches), frill traits (e.g., size, relative and absolute patch sizes), or morphological measures (e.g., head size, bite force) were found to predict the outcome of contests. To the best of our knowledge, this is the first example of carotenoid-based patches signaling male fighting ability in a lizard.

Key words: Chlamydosaurus kingii, color signal, communication, fighting ability, reflectance, visual modeling.
et al. 2006; Healey et al. 2007; Qi et al. 2011). Such signals may help individuals to immediately assess the relative competitive ability of rivals, without having to revert to costly escalated interactions (and physically fighting) when establishing dominance relationships. Indeed, some of the most conspicuous and elaborate color signals seen in birds and lizards are used for signaling status and resolving male contests (reviewed in Whiting et al. 2003).

In lizards, color signaling is highly developed, often permitting effective communication when prominently displayed over long distances, even in complex environments (Fleishman et al. 2009). However, the evolution of conspicuous color patterning is typically restricted by predation pressure, which favors more cryptic coloration through natural selection (Stuart-Fox et al. 2003; Stuart-Fox and Ord 2004). Many lizards overcome this trade-off by displaying conspicuous color signals on the underparts of their body, which are often not visible to predators, or by displaying color on body areas or morphological structures that can be distended and retracted (i.e., with the color hidden when not displayed; Whiting et al. 2003). These ornaments are evident in many different forms; for example, modification of the dewlap (on the throat), such as in the Anolis species complex (Nicholson et al. 2007), or the spectaculatively colored tongues of blue-tongue skinks, Tiliqua species (Cogger 2000). However, perhaps one of the most dramatic and unusual color displays is found in the frillneck lizard, Chlamydosaurus kingii (Shine 1990; Christian et al. 1995).

Frillneck lizards are characterized by an elaborately colored frill around their necks (Figure 1), which can be erected through use of the hyoid musculature (Shine 1990). Frill color shows marked geographic variation across their range in tropical northern Australia; in their western range (Western Australian and Northern Territory populations), lizards typically display a red-orange coloration in the frill (Figure 1), whereas lizards in more eastern populations (Arnhemland and Queensland) predominantly display yellow or white frills (Cogger 2000; Wilson and Swan 2010). Frill size is also sexually dimorphic, with males displaying larger and more brightly colored frills than females. Observations of males in the wild suggest that the frill may function in both territory defense and courtship (Shine 1990; Christian et al. 1995); however, no correlative or experimental studies have investigated the relative function of the colored frill in resolving male conflicts and thus its signal function remains unclear.

To determine the signal function of the red-orange frill color of lizards in western populations, we first established whether the color patch was pigmented or carotenoid based. Second, to quantify color signal expression as perceived by rival lizards, rather than the human visual system, we measured spectral reflectance of color patches (using a reflectance spectrometer) and applied a model of color perception based on the visual pigment sensitivities for a closely related agamid (Canophorus ornatus; Barbour et al. 2002). In addition, because correlates of the frill and/or different male traits may be related to fighting ability, we also examined a range of frill traits (relative size, relative and absolute patch size) and other morphological traits known to be important in resolving contests in lizards (e.g., bite force, body size, and mass). Lastly, to experimentally test the role of the red-orange frill in resolving male contests, we staged dyadic contests between unfamiliar males of similar sizes. Males are highly territorial during their reproductive season (Shine 1990; Griffiths 1999) and typically compete for access to prominent trees from which to display to females (and defend their territories). Therefore, contests were staged to coincide with territorial establishment (i.e., when competition is most intense) and over access to a single tree trunk (i.e., a valued resource). Because territory establishment and maintenance is likely to be critical for male mating success (Anderson 1994), any signal trait that increases the efficiency (or decreases the cost) of frequent contests between males should be favored.

MATERIALS AND METHODS
Study system
The frillneck lizard is a large agamid (mean adult snout–vent length [SVL] in the study population is 231.15 mm [95% CI = 225.10–237.20 mm; range = 210–255 mm], but individuals from the eastern populations are often larger; see Christian et al. 1995), which is restricted to the northern tropical savannas of Australia. Although they have a restricted distribution, frillneck lizards are locally abundant. We studied 2 wild populations of frillneck lizards in the eastern Kimberley region of northwestern Australia, which are situated more than 100 km apart (Wyndham: 15.49°S, 128.12°E; Kununurra: 15.77°S, 128.74°E). The eastern Kimberley experiences a strongly seasonal monsoonal climate consisting of a dry season (May to September), a wet season (November to March), and 2 short transitional seasons. All fieldwork was conducted during the wet season, as this is when the lizards are reproductively active, with males actively defending their territories (Christian and Bedford 1995). Studies of Northern Territory populations indicate that adult males can occupy territories more than 2.5 ha in area (Shine and Lambeck 1989; Griffiths 1999) but also often reach high population densities in good quality foraging environments (i.e., open understory) where competition for trees can be common.

Male lizards were captured either by hand or by noosing (Shine 1990; Christian et al. 1995). Lizards were sexed by head and SVL measurements (Christian et al. 1995), and hemipene eversion (Harlow and Shine 1999) was used in 2 cases where body measurements were ambiguous. Capture location was recorded on a handheld GPS, and all lizards were released at their capture location within 72 h. To ensure that male lizards could be reliably and rapidly located for the dyadic contests, individuals were fitted with radio transmitters (Sirtrack V1G 118) when first captured (November 2011–January 2012). Transmitters were glued to a small square of nylon mesh and then attached to the base of the tail using nontoxic silicon adhesive. Attachments weighed 0.8–2.4% of the lizards’ body mass and did not noticeably interfere with any behavior. Transmitter-bearing lizards were released within 12 h of capture and then later relocated for use in staged contests.

Male morphology and bite force
All lizards were permanently marked for future identification using passive integrated transponder tags (Hongteng Barcode Company) implanted subcutaneously under a loose fold of skin on the neck (Griffiths and Christian 1996) and temporarily marked with nontoxic paint pens for identification during trials. Maximal bite force for each lizard was measured using a piezoelectric transducer (Kistler type 9203 force transducer ± 500 N). Individuals were induced to bite forcefully on specially constructed plates (measuring bite intensity) by placing the plates between a lizard’s open jaws. As this measure is designed to capture an individual’s maximum performance (Anderson et al. 2008), the highest value of 3 measures was recorded as the lizard’s maximum bite force (e.g., Vanhooydonck et al. 2010). Only vigorous bites where the lizard exerted a high degree of force were recorded; nonvigorous bites (i.e., those producing anomalously low readings) were discarded (Anderson et al. 2008; Vanhooydonck et al. 2010). Body size (SVL),
Figure 1

(A) Adult male frillneck lizard from Western Australia displaying his colored throat and frill. (B) The color patches measured on frillneck lizards using a reflectance spectrometer: (1) red-orange frill; (2) white frill; (3) red-orange throat (clearly shown in A); and (4) background (brown) frill. Three measurements were taken of each patch (left and right in the case of 1, 2, and 4) on all individuals and averaged for each color patch (and left and right red-orange and white patches were averaged).
head length, head width, head height, tail length, hindlimb length, and frill length (from the bony ridges on the top of the head to the furthest extremity of the frill in a line parallel to the main axis of the body; Christian et al. 1995) were measured to the nearest millimeter, and mass to the nearest 0.1 g, immediately after capture. Because the 3 head measurements were intercorrelated, we used the first axis of a principal component analysis (PCA), which explained 99.91% of the variation, as an independent measure of head size. Because frill size was positively correlated with body size (see Results), we calculated relative frill size as the residuals from frill size linearly regressed on body size (SVL). Similarly, we calculated body condition using the residuals of mass/SVL. Finally, standardized digital photos of the erect frill were taken against a standardized white background. Color patch area (Figure 1) was calculated as a percentage of total frill size using the graphics software Scion Imaging Software Beta 4.02 (Scion Corporation, Frederick, MA).

Male coloration and visual modeling

Immediately prior to commencement of the tournament, we quantified male coloration using a USB2000 spectrometer (Ocean Optics, Dunedin, FL) with illumination from a PX-2 light source. For each individual, we took measurements of each side (i.e., left and right) of the red-orange and white patches on the frill and throat and the brown background of the frill (Figure 1). Three consecutive scans (removing the probe between each) of different locations in the center of each patch were taken with a fiber-optic reflectance probe and in relation to a WS-2 white standard scanned prior to each individual. For analysis, we averaged spectral reflectance of all 3 scans over each 5-nm interval in the range of 320–700 nm, the visual spectrum for most diurnal lizards (Loew et al. 2002). As there was no variation observed between left and right sides of the frill, for the red-orange and white frill patches, we collated the measurements of both sides to obtain the average spectral reflectance (see Figure 2 for average wavelength curves of the measured patches).

As visual systems encode signals as contrasts between adjacent colors, we analyzed the color variation as changes in the contrast (relative to the lizard visual system) between the 3 frill colors: red-orange (frill and throat), white (frill) coloration, and the surrounding brown frill background (see Figure 1). To estimate contrasts, we applied the Vorobyev–Osorio model (Vorobyev and Osorio 1998; Osorio and Vorobyev 2008), which estimates the discriminability of 2 colors (e.g., the red-orange frill and the surrounding brown frill background) in units of discrimination thresholds (or “just noticeable differences”) and assumes that visual discrimination is limited by photoreceptor noise. The model produces a measure of the chromatic (color) contrast based on the 4 single cones used for color perception and a measure of achromatic (“brightness”) discrimination, whereas the long wavelength–sensitive photoreceptors are thought to function in achromatic (“brightness”) discrimination.

Carotenoid and pterin assays

Small tissue samples of the colored frill were collected from male frillnecks (during measurements described above) and stored at −20 °C until the carotenoid and pterin assays were conducted. For both assays, we tested 17 males. To determine whether carotenoids were present in the red-orange–colored frill, we performed a simple chemical assay following McGraw et al. (2005). Briefly, the assays involved placing 3–5 mg of the frill tissue in 1 mL of acidified pyridine (acidified with 38% hydrochloric acid; 4 drops of HCl for every 100 mL of pyridine). Samples were placed along with negative controls in a 95 °C water bath for 4 h to unbind carotenoids from the tissues. If the solution was colored (compared with the negative control; McGraw et al. 2005), 2 mL of distilled water and 1 mL of 1:1 hexane:tert-butyl methyl ether (TBME) were added to the vial. This separated carotenoids into a top lipid layer when the mixture was allowed to settle overnight. Any color remaining in the upper phase is attributed to the presence of carotenoids (McGraw et al. 2005).

We assayed for pterins in the red-orange–colored frill following Kikuchi and Pfennig (2012). Briefly, finely diced tissue samples were placed in 0.5 mL of 1 N NH₄OH (which dissolves pteridines). Before centrifuging, a further 0.5 mL of 1 N NH₄OH was added (to make up 1 mL) and then 1 mL of 1:1 hexane:TBME solution was added. Tubes were vortexed for 30 s to extract any carotenoids into the hexane:TBME phase. The hexane:TBME phase was then separated from the NH₄OH phase by centrifuging for 5 min at 8000 rpm. Any visible color (in the lower (NH₄OH) phase) is then attributed to the presence of pterins (Kikuchi and Pfennig 2012).

Male contest experiments

Staged contests were carried out during January 2012 using a total of 20 males (13 from the Wyndham sites and 7 from the Kumunurra
Trials were conducted in an indoor arena (100 × 80 × 200 cm high) with a single vertical tree trunk in the center, which provided the best access to an overhead basking lamp. Because frillneck lizards typically acquire and defend prominent trees in their territories (Shine 1990), and because the tree trunk provided the only elevated display point in the arena, as well as an optimum basking spot, this provided a valued resource for lizards to compete for. Our observations of interactions between frillneck males in the wild reveal that, following contests, the dominant male will typically reassume an elevated position from which to continue displaying, whereas the loser assumes a submissive posture low to the ground. In our experimental contests, the tree perch was never used as an escape route for the subordinate (losing) male. Lizards were kept in standardized conditions (temperature-controlled room at 26 °C) for at least 12 h prior to the trials, but given 10 min under a heat lamp immediately before trials commenced. This ensured that all competitors were kept at a constant temperature, below that of optimum basking, to standardize and maximize their motivation to compete for access to the heat source.

Standardized dyadic contests were performed (see Stuart-Fox et al. 2006) in which 2 males were placed opposite one another (but equidistant from the basking/display platform) in the arena before the observer quickly withdrew. Contests were videotaped and also monitored by an observer once every 10 min from behind a thick shade-cloth screen. We terminated interactions once a clear winner was identified or if no interaction had occurred after 30 min. Winners were identified as the individual to reach the optimum basking position after passive or active interactions with its opponent. Typically, this involved the winner turning and facing its rival, elevating its head and/or body, and erecting its frill, which would result in its rival adopting a submissive posture (head and body low to the ground, no frill erection). If an individual reached the basking refuge first, without any interaction with its opponent, the trial was rerun (n = 3 trials). Contestants were given a minimum of 12 h between trials.

Contests between males were performed as part of a “tournament,” where the relative fighting ability of males was estimated based on their interactions between different “players” (Whiting et al. 2006). Males were initially size matched within 10% of SVL (of the smaller individual), as is common practice in staged lizard contests (Stuart-Fox and Johnston 2005; Stuart-Fox et al. 2006; Healey et al. 2007). Following these initial trials, individuals with the same records (e.g., win–win, loss–win) were then paired against each other (to avoid potential winner–loser effects). All paired contests were between unfamiliar individuals captured from different localities. Lizards generally underwent 3 trials each, unless there was no size-matched (within 10% SVL) opponent available with an identical contest record (n = 4). In addition, 2 lizards were used in 5 trials, and a further 2 underwent 4 trials. In total, 31 trials were conducted (with 20 males); only 1 trial was terminated with no discernible winner.

Statistical analysis

The interrelations between morphological variables (SVL, mass, condition, head size, relative frill length, red-orange and white patch sizes, and hindlimb length), bite force, and spectral measures (chromatic and achromatic contrasts) were analyzed using Pearson’s correlations. Generalized linear models (GLM) with a logarithmic link function and Poisson distribution were used to evaluate the relative contribution of these potentially interacting variables on color expression. The significance of these predictor variables was tested by the change in deviance of the different models using a chi-square approximation.

Contest outcomes were analyzed using the Bradley–Terry (B-T) model for paired comparisons (full details of the B-T model are provided in Firth 2005; Stuart-Fox et al. 2006; Whiting et al. 2006). Briefly, B-T models assume that in a contest between 2 competitors,
the odds of winning are positive-valued parameters representing their “fighting ability,” such that the result of any contest is the ratio of the abilities of the 2 contestants (Firth 2005). This form of GLM takes proper account of dependency within and between contests and can also accommodate an incomplete matrix of possible interactions (Bradley and Terry 1952; Firth 2005). The B-T models were run using the statistical program R (Firth 2005; R Development Core Team 2005), with site (Wyndham or Kurnurra), morphological variables (SVL, mass, body condition, head size, relative frill length, red-orange and white frill patch size, and hindlimb length), bite force, and spectral measures (chromatic and achromatic contrast) for all color patches (Figure 1) as the independent predictor variables. To effectively examine the relative magnitudes of different effects, we used standardized regression coefficients with all predictor variables scaled to have unit standard deviations.

For all models (both colorimetric and B-T), all possible effects, combinations, and interactions were initially modeled. Second-order Aikake information criterion (AIC_C) weights were calculated for each model. The AIC_C (used for smaller sample sizes) balances the fit of the model against the number of parameters and was used to objectively compare different models and select the best-fitting and most parsimonious model; the model with the lowest AIC_C value (and a ΔAIC_C of ≤ 2) is accepted as the model best fitting the data (Burnham et al. 2011). Because all of the best-fitting models were the only models with $\Delta \text{AIC}_C < 2$ (and an AIC_C weight of at least 74% compared with other potential models), for simplicity, the top models are presented (i.e., summaries of the competing models).

RESULTS

Carotenoid and pterin assays

For all 17 males, the red-orange frill samples were bright yellow to orange (compared with the transparent negative control), indicating the presence of carotenoids (McGraw et al. 2005). In contrast, all samples tested for pterins were transparent (no color), indicating that pterins are absent and not responsible for the bright red-orange coloration displayed in male frills.

Frill colorimetrics

As expected, the majority of body size variables (e.g., mass, SVL, and head size) were positively correlated (see Table S1); thus, heavier males had larger heads and longer SVL and hindlimbs. Additionally, the achromatic and chromatic measures for the different colored patches were intercorrelated (see Table S2). In particular, both the red-orange frill and throat patches were similarly colored, but the red-orange color on the throat was less intense than on the frill (Figure 2).

Using a GLM to test for the morphological traits that were related to color expression, the best-fitting model for achromatic red-orange brightness identified both body mass ($F_{1,24} = 5.39, P = 0.03$; Figure 3) and SVL ($F_{1,24} = 4.07, P = 0.05$; Table 1). Substituting chromatic red-orange coloration produced a similar model with body mass as the single best predictor ($F_{1,24} = 6.09, P = 0.005$; Figure 3 and Table 2). Similarly, the best-fitting models for both achromatic and chromatic red-orange throat also identified both SVL (achromatic: $F_{1,24} = 4.18, P = 0.04$; Table 1; chromatic: $F_{2,24} = 2.96, P = 0.06$; Table 2) and body mass (achromatic: $F_{1,24} = 5.29, P = 0.003$; Table 1; chromatic: $F_{1,24} = 5.30, P = 0.003$; Table 2) as the sole predictors. Thus, larger and heavier males produced brighter and more intensely colored red-orange frill and throat patches than their smaller counterparts.

In contrast, the white frill patches were unrelated to spectral measures of the red-orange patches (Table S2), as well as size traits (e.g., body, head, or frill size). Instead, the size of the white patch was the sole predictor of the achromatic ($F_{1,24} = 7.94, P = 0.01$) and chromatic measures of the white patch ($F_{1,24} = 16.42, P < 0.001$).

Predictors of contest success

Two male traits were identified as significant predictors of contest success in the final best-fitting model: body mass and the chromatic contrast (color) of the red-orange frill patches (Table 3). Indeed, of the 30 staged contests, 25 (83%) were won by the heavier male, and 27 (90%) were won by the male with the more colorful (greater chromatic contrast) patch (Figure 4). Although the chromatic contrast of the red-orange frill appears to be the stronger predictor of fighting ability (predicts 90% of wins; $P = 0.003$), the estimated effect sizes of the body mass and red-orange patch chromatic contrast, as measured by standardized regression coefficients (Table 3), suggest that body mass may explain more of the variability. However, the coefficient estimate of this variable may be confounded by the much greater variability in body mass (225–706 g) of males. Indeed, of the 10 contests that had weight-matched males (within 10%), males with “redder” frills won 9 (90%) of the contests (only 5 [50%] of the heavier males won), whereas in the 20 contests between males that differed by more than 10%, 20 (100%) were won by the larger males and only 18 (90%) by the “redder” male. This suggests that chromatic variability is being used to assess the relative fighting ability of an opponent in situations where there is no clear discrepancy in body mass between opponents.

DISCUSSION

Our results indicate that the red-orange frill patches are carotenoid based and are a reliable predictor of competitive ability and contest success in male frillneck lizards. Body size (SVL and/or mass) is a common determinant of contest outcome in many lizard species (e.g., López and Martín 2001; Hibbitts et al. 2007; Qi et al. 2011) and also represented a significant predictor of fighting ability in this species. Although body mass appears to be a better predictor of contest outcome than variation in frill coloration, more intense red-orange frill coloration also plays an important role in resolving contests, especially among size-matched rivals. Furthermore, the relationship between body mass and red-orange frill colorimetrics suggests that larger (older) males may have “redder” frills and adds to growing evidence in reptiles that carotenoid-based signals (although relatively rare in reptiles; Olsson et al. 2008; Weiss et al. 2012) are also condition-dependent signals (Fitz et al. 2009; Cote et al. 2010). To the best of our knowledge, this is the first example of a carotenoid-based color patch signaling fighting ability in a lizard.

Much attention has been given to the reliability of carotenoid-based signals (Blount 2004; Hill and McGraw 2006; Svenson and Wong 2011), especially in birds and fish, as such signals are typically thought to have direct honesty-enforcing production costs. In particular, because carotenoid pigments cannot be synthesized and have to be acquired from the diet, carotenoid-based trait expression is typically thought to be related to the male’s ability to obtain, physiologically transport, process, and deposit carotenoid pigments into colored patches (Goodvin 1984; Brush 1990). A male’s foraging ability, nutritional condition, parasite susceptibility, and immunocompetence may all influence carotenoid expression, as well as the amount of carotenoids an individual is able to invest in a sexual
signal (Lozano 1994; McGraw and Ardia 2003; Svensson and Wong 2011). For example, if there is interference competition over the food source from which the pigments are derived (e.g., carotenoid-rich invertebrates), possibly because territories overlap high-quality food patches, carotenoid coloration can be directly related to competitive ability. We do not know whether such feeding competition exists to the extent that it imposes a limitation on access to carotenoid pigments, but frillneck lizards feed almost exclusively on termites, dragonflies, moths, butterflies, grasshoppers, and other small arthropods (Shine and Lambeck 1989; Griffiths and Christian 1996), and carotenoid-rich invertebrate sources may be rare or patchy in space. In addition, variation in carotenoid-based pigmentation is influenced by environmental stresses such as parasites and pathogens (Olson and Owens 1998) and aspects of immunocompetence and may thus indicate a male’s vigor, such as superior health, and/or their ability to forage for scarce carotenoid-rich prey. However, further studies are required to understand the constraints on color expression in this species, as well as in reptiles in general (Olsson et al. 2008).

The lack of aggression observed here in settling disputes and contests is not unusual and is common in the resolution of many animal contests (e.g., Clutton-Brock and Albon 1979; Whiting et al. 2003, 2006; Morrell et al. 2005). Indeed, passive conflict resolution provides further support that red-orange coloration reliably functions as a traditional status signal used to settle costly interactions (Whiting et al. 2003). All males staged in dyads were unfamiliar, so previous win/loss experience (familiarity) cannot be attributed to the lack of aggressive interactions (Whiting 1999; Osborne 2005). Although males were randomly size matched, it may be that color differences between staged opponents were sufficiently different for the competitively superior male to effectively signal their status without fighting. For example, the chromatic contrast (color) differences between winners and losers were relatively large (e.g., winners often displayed a frill twice as chromatic as their opponent;
Table 1
Summary of GLM models showing main predictors of achromatic red-orange frill and throat coloration

<table>
<thead>
<tr>
<th>Model</th>
<th>Variable</th>
<th>Coefficient</th>
<th>SE</th>
<th>Standardized coefficient</th>
<th>AIC_C</th>
<th>∆AIC_C</th>
<th>AIC_C weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frill coloration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Mass</td>
<td>0.02</td>
<td>0.005</td>
<td>2.59</td>
<td>28.32</td>
<td>0</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>SVL</td>
<td>0.08</td>
<td>0.04</td>
<td>1.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mass</td>
<td>0.02</td>
<td>0.02</td>
<td>2.19</td>
<td>33.21</td>
<td>4.89</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>SVL</td>
<td>0.05</td>
<td>0.07</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Head size</td>
<td>0.005</td>
<td>0.32</td>
<td>1.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Body condition</td>
<td>0.008</td>
<td>0.003</td>
<td>1.25</td>
<td>35.43</td>
<td>7.11</td>
<td>0.02</td>
</tr>
<tr>
<td>Throat coloration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Mass</td>
<td>0.02</td>
<td>0.005</td>
<td>2.67</td>
<td>40.87</td>
<td>0</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>SVL</td>
<td>0.09</td>
<td>0.04</td>
<td>1.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Body condition</td>
<td>0.007</td>
<td>0.003</td>
<td>1.17</td>
<td>47.36</td>
<td>6.49</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>SVL</td>
<td>0.04</td>
<td>0.07</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Head size</td>
<td>0.23</td>
<td>0.34</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mass</td>
<td>0.006</td>
<td>0.02</td>
<td>1.11</td>
<td>48.36</td>
<td>7.94</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>SVL</td>
<td>0.04</td>
<td>0.07</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Head size</td>
<td>0.23</td>
<td>0.34</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The first models are the best-fitting models (i.e., only model with ∆AIC_C < 2). Only the top 3 models are reported here; all the other models had very low (≤0.01) model weights. SE, standard error.

Table 2
Summary of GLM models showing main predictors of chromatic red-orange frill and throat coloration

<table>
<thead>
<tr>
<th>Model</th>
<th>Variable</th>
<th>Coefficient</th>
<th>SE</th>
<th>Standardized coefficient</th>
<th>AIC_C</th>
<th>∆AIC_C</th>
<th>AIC_C weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frill coloration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Mass</td>
<td>0.02</td>
<td>0.006</td>
<td>2.73</td>
<td>42.32</td>
<td>0</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>SVL</td>
<td>0.08</td>
<td>0.042</td>
<td>1.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Mass</td>
<td>0.02</td>
<td>0.006</td>
<td>2.7</td>
<td>46.01</td>
<td>3.69</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>SVL</td>
<td>0.07</td>
<td>0.06</td>
<td>1.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hindlimb length</td>
<td>0.02</td>
<td>0.05</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Body condition</td>
<td>0.008</td>
<td>0.003</td>
<td>1.72</td>
<td>51.03</td>
<td>8.71</td>
<td>0.011</td>
</tr>
<tr>
<td>4</td>
<td>Mass</td>
<td>0.02</td>
<td>0.02</td>
<td>2.01</td>
<td>51.09</td>
<td>8.77</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>SVL</td>
<td>0.07</td>
<td>0.08</td>
<td>1.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Head size</td>
<td>0.04</td>
<td>0.37</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Throat coloration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Mass</td>
<td>0.016</td>
<td>0.005</td>
<td>2.48</td>
<td>37.39</td>
<td>0</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>SVL</td>
<td>0.07</td>
<td>0.04</td>
<td>1.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Body condition</td>
<td>0.01</td>
<td>0.01</td>
<td>1.71</td>
<td>39.76</td>
<td>2.37</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>Head size</td>
<td>0.02</td>
<td>0.29</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mass</td>
<td>0.02</td>
<td>0.005</td>
<td>2.09</td>
<td>44.43</td>
<td>7.04</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>SVL</td>
<td>0.03</td>
<td>0.05</td>
<td>0.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hindlimb length</td>
<td>0.05</td>
<td>0.04</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The first models are the best-fitting models (i.e., only model with ∆AIC_C < 2). Only the top 4 models are reported here; all the other models had very low (≤0.01) model weights. SE, standard error.

Table 3
Bradley–Terry models showing the best-fitting predictors of contest outcomes for frillneck lizard contests

<table>
<thead>
<tr>
<th>Model</th>
<th>Variable</th>
<th>Coefficient</th>
<th>SE</th>
<th>Standardized coefficient</th>
<th>AIC_C</th>
<th>∆AIC_C</th>
<th>AIC_C weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mass</td>
<td>1.01</td>
<td>0.33</td>
<td>5.23</td>
<td>9.84</td>
<td>0</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>Chromatic red-orange</td>
<td>0.04</td>
<td>0.02</td>
<td>2.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Mass</td>
<td>0.05</td>
<td>0.03</td>
<td>4.21</td>
<td>13.59</td>
<td>3.75</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>Achromatic red-orange</td>
<td>0.18</td>
<td>0.40</td>
<td>2.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mass</td>
<td>0.05</td>
<td>0.04</td>
<td>4.23</td>
<td>14.52</td>
<td>4.68</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>Chromatic red-orange</td>
<td>0.98</td>
<td>0.43</td>
<td>2.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Achromatic red-orange</td>
<td>0.18</td>
<td>0.20</td>
<td>2.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mass</td>
<td>0.04</td>
<td>0.02</td>
<td>4.23</td>
<td>15.65</td>
<td>5.81</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>Achromatic red-orange</td>
<td>0.745</td>
<td>0.78</td>
<td>2.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Mass</td>
<td>0.04</td>
<td>0.02</td>
<td>4.23</td>
<td>17.75</td>
<td>7.91</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Head PCA</td>
<td>0.16</td>
<td>0.19</td>
<td>2.67</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The first model is the best-fitting model (i.e., only model with ∆AIC_C < 2). Only the top 5 models are reported here; all the other models had very low (≤0.01) model weights. SE, standard error.
Olsson et al. 2005; Whiting et al. 2006; Healey et al. 2007), and fish (e.g., Pryke and Griffith 2007; Senar et al. 2008), lizards (e.g., of some specific aspect of competitive fitness are common in birds visual cues (red-orange coloration and body size). Visual indicators that rivals were assessing one another’s competitive ability using without the need to escalate aggression and fight.

Between opponents may have been sufficient for conflict resolution the less chromatic male won.

Figure 4; thus, this discrepancy and mismatch in signaling status between opponents may have been sufficient for conflict resolution without the need to escalate aggression and fight.

Because no contest progressed to physical combat, it seems likely that rivals were assessing one another’s competitive ability using visual cues (red-orange coloration and body size). Visual indicators of some specific aspect of competitive fitness are common in birds (e.g., Pryke and Griffith 2007; Senar et al. 2008), lizards (e.g., Olsson et al. 2005; Whiting et al. 2006; Healey et al. 2007), and fish (e.g., Evans and Norris 1996; Dijkstra et al. 2008). However, many studies have shown that differences in color patch size, as opposed to color per se, are the most important aspect of the signal. For example, in dwarf chameleons (Bradypodion pumilum), the relative area of the colored patch predicted contest outcome (Stuart-Fox et al. 2006), with similar results being found in other studies of lizards (Thompson and Moore 1991; Whiting et al. 2003; López et al. 2004). In this study, however, the size of the red-orange and white frill patches did not predict contest outcome and was also unrelated to any aspects of male competitive ability (e.g., red-orange coloration, body mass, and size). Instead, our results suggest that it is the concentration (intensity) rather than the patch size of the carotenoid pigmentation that is most informative to male frillneck lizards. This may be because signal intensity, rather than size, has the greatest impact when displayed in close contact with a rival and/or predator. This is typically the case for the frillneck lizard where the frill is suddenly displayed and then flapped open and closed at regular intervals in close proximity to rivals and predators (Shine 1990). Color intensity is also an important component of signals that are assessed in a noisy visual environment (Stuart-Fox et al. 2007; Fleishman et al. 2009), which may also be relevant to frillneck lizards that display to conspecifics through habitat, which is dominated by large trees.

The throat patch was similar to the red-orange frill patch and may also function as a signal in male contests. The throat patch was less intense than the red-orange color displayed on the frill (Figure 2) and may function either as a static display or as a precursor to the frill display. A static display such as a throat-based color signal could circumvent the need to erect the frill, particularly when rivals are clearly conditionally (and thus chromatically) mismatched. This supports the chin-up posture that males frequently adopt when facing rivals on the ground and is also a common feature of many dragon species, which use colored throat displays for signaling status and intent (e.g., bearded dragons, Pogona; Carpenter et al. 1970; Ctenophorus spp.; Stuart-Fox et al. 2004). In addition, the throat patch may act as a “backup” signal (Johnstone 1996) to the frill, conveying the same information and thereby increasing the likelihood of successfully conveying information to a rival about fighting ability or dominance.

The potential signal function of the large white areas on the frill is less clear. The size and colorimetrics of the white patches did not correlate with any aspect of male morphology or fighting ability. However, the adjacent location of the red-orange and white frill patches (see Figure 1) may serve to maximize the conspicuousness of the color signal (Charles and Ord 2012) and thereby act as an “amplifier” (Castellano and Cermelli 2010). This certainly appears to be the case in frillneck lizards, where the frill’s red-orange coloration becomes markedly more conspicuous when viewed against a background of white, which has uniformly high reflectance (Figure 2). Furthermore, the red-orange is also conspicuous against adjacent brown patches on the frill because brown has low overall reflectance, whereas the red-orange has a steeper slope and a clear peak. When adjacent colors have high and low chromaticity or they do not share wavelengths in common (complimentary colors), they are more conspicuous (Endler 1993).

This study adds to growing evidence that variation in carotenoid-based coloration may play a key role in resolving conflicts in animals (e.g., Evans and Norris 1996; Crowley and Magrath 2004; Hill and Barton 2005; Pryke 2009; Griggio et al. 2010). Furthermore, red coloration (irrespective of its production) has often been associated with aggression and dominance in a wide range of taxa, including fish (Dijkstra et al. 2005; Guderley and Couture 2005), reptiles (Sinervo et al. 2000; Healey et al. 2007; Huyghe et al. 2007; Baird

![Figure 4](http://beheco.oxfordjournals.org/)

Chromatic contrast (color) of red-orange patches of winners and losers in the staged contests. The dashed line provides equal colorimetric values for both winners and losers; values above the dashed line show contests in which the more chromatic male won, whereas values below the line show contests where the less chromatic male won.
et al. 2013), birds (Pryke et al. 2002; Crowley and Magrath 2004; Pryke and Griffith 2006, 2009), humans (Hill and Barton 2005; Little and Hill 2007), and other primates (Setchell and Wickings 2005). Indeed, recent studies suggest that the color red is inherently (genetically determined) intimidating to rivals (Healey et al. 2007; Pryke 2009) and thus may be a general signal of intimidation. In frillneck lizards, the avoidance of opponents with redder frills suggests that the variable carotenoid-based coloration displayed by males functions as a status signal. Although color variation has frequently been shown to correlate with ecological variables in agamids (LeBas and Marshall 2000; Stuart-Fox et al. 2004; Chen et al. 2012), few studies have conclusively demonstrated a status signaling function (e.g., Cuervo and Shine 2007). Frillneck lizards are also well known for extending their frills to startle or intimidate predators and both males and females have frills. This suggests that in males, frills may have a dual function as an antipredator signal and a sexual signal used during male contest competition. In addition, they may also function as an ornament for female choice, although to the best of our knowledge this has never been tested. Given the considerable geographic variation in frill color and the multiple roles frills may play in signaling to conspecifics and predators, further studies investigating both behavioral (e.g., female mate choice) and ecological (e.g., predation) pressures on different populations will help illuminate the relative roles of sexual and natural selection on frill color expression in one of Australia’s most enigmatic lizards.

SUPPLEMENTARY MATERIAL

Supplementary material can be found at http://www.beheco.oxfordjournals.org/

FUNDING

This work was supported by Australian Research Council grants (S.R.P.) and an Australian Geographic Seed Grant (D.G.H.).

We thank Lacy Rouse for assistance in the field; Devi Stuart-Fox for help with colorimetric analyses; Dani Chandelosama for help with carotenoid assays; and Troy Baird, Catherine Young, and anonymous reviewers for their helpful comments on the manuscript. Permission to collect and house lizards was granted by the Western Australia Department of Environment and Conservation (license no. SFO08317), and all work was approved by the Australian National University’s Animal Ethics Committee (A2011/65).

Handling editor: Glaucio Machado

REFERENCES

Evans MR, Norris K. 1996. The importance of carotenoids in signaling during aggressive interactions between male firemouth cichlids (Cichlasoma meeki), Behav Ecol. 7:1–6.

Downloaded from http://beheco.oxfordjournals.org at Taru University on March 3, 2014
Behavorial Ecology

Pryke SR. 2009. Is red an innate or learned signal of aggression and intimidation? Anim Behav. 78:393–398.

Downloaded from http://beheco.oxfordjournals.org/ on March 3, 2014

